1 Introduction
2 Ground Rules
Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class
The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up
The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup
Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API
Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O
UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation
UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services
UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN
CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND
Glossary/Index
Downloads
|
SYS_DISPLAY
In the previous article, we covered the F$FILE_ATTRIBUTES lexical function. Now we
will look a the SYS_DISPLAY system service that it uses.
function SYS_DISPLAY( FAB, Err, Success : int64 ) : int64 ;
var Status : byte ;
SysRequest : TInteger3_Request ;
begin
fillchar( SysRequest, sizeof( SysRequest ), 0 ) ;
SysRequest.Request.Subsystem := UOS_Subsystem_FIP ;
SysRequest.Request.Request := UOS_FIP_Display ;
SysRequest.Request.Length := sizeof( TInteger3_Request ) - sizeof( SysRequest.Request ) ;
SysRequest.Request.Status := integer( @Status ) ;
SysRequest.Int1 := FAB ;
SysRequest.Int2 := Err ;
SysRequest.Int3 := Success ;
Call_To_Ring0( integer( @SysRequest ) ) ;
Result := Status ;
end ;
We add the SYS_DISPLAY function to the RMS unit. When we get to supporting
RMS, we will update this to handle RMS-specific information.
UOS_FIP_Display:
begin
UE := Enter_System_Call( Request, SReq, PID, MMC, sizeof( TInteger3_Request ) - sizeof( SReq ),
Address ) ;
if( UE <> nil ) then
begin
Set_Last_Error( UE ) ;
exit ;
end ;
try
Integer3_Request := PInteger3_Request( Address ) ;
// Read input into caller's buffer...
Display( PID, Integer3_Request.Int1, Integer3_Request.Int2, Integer3_Request.Int3,
IOSB ) ;
Status := Write_User_int64( Kernel, PID, Integer3_Request.Request.Status,
IOSB.r_io_64.r_bcnt_32.l_bcnt ) ;
finally
Exit_System_Call( integer( Integer3_Request ), PID, MMC,
sizeof( TInteger3_Request ) - sizeof( SReq ) ) ;
end ;
end ;
This code is added to the FIP.API method.
procedure TUOS_FiP.Display( PID : TPID ; _FAB, Err, Succ : int64 ;
var IOSB : TIOSB ) ;
var P : integer ;
Prefix : packed record
Code : byte ;
Length : byte ;
end ;
Device : TDevice ;
Dummy : integer ;
Info : TUOS_File_Info ;
FAB : TFAB ;
NAM : TNAML ;
Dev, Dir, Name, Node, Extension, Ver : string ;
Next : int64 ;
UE : TUnified_Exception ;
XABALL : TXABALL ;
XABDAT : TXABDAT ;
XABFHC : TXABFHC ;
XABITM : TXABITM ;
XABKEY : TXABKEY ;
XABPRO : TXABPRO ;
XABRDT : TXABRDT ;
XABSUM : TXABSUM ;
XABTRM : TXABTRM ;
begin
// Get file specification parts...
if( _FAB = 0 ) then
begin
exit ;
end ;
fillchar( FAB, sizeof( FAB ), 0 ) ;
Get_User_Data( Kernel, PID, _FAB, 1, FAB, IOSB.r_io_64.w_status ) ; // Get FAB length
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
if( FAB.FAB_B_BLN > sizeof( FAB ) ) then
begin
FAB.FAB_B_BLN := sizeof( FAB ) ;
end ;
Get_User_Data( Kernel, PID, _FAB, FAB.FAB_B_BLN, FAB, IOSB.r_io_64.w_status ) ; // Get FAB
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
The Display method first checks for a FAB address. If 0, we exit immediately (this
is a no-op). Next, we zero-fill the FAB so that any unsupplied fields are 0 - in the
case when the caller passes only part of the structure. We then get the first byte
of the FAB from the caller's memory. This is the FAB length value. We exit immediately
if there was an error reading that value. We then make sure that the passed size
doesn't excede the actual FAB length. Then we read the entire (provided) FAB structure
from the caller's memory - and exit if there was an error.
//TODO:Handle file handle
if( FAB.FAB_L_NAM = 0 ) then // No name block
begin
exit ;
end ;
Get_NAM( Kernel, PID, FAB.FAB_L_NAM, NAM, IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
On VMS, this system call only works on files that are open. In UOS, we avoid the
overhead of having to open a file if all we want is some information on it. UOS
will support open files as well (in fact, some return values only apply to files that are
currently open), but doesn't require them. For now, we'll ignore the case where the
file is already open, and when a file handle is passed instead of a name.
If the pointer to the NAML structure is null, we exit since we have no file name that
we can use to retrieve information. Otherwise, we use the Get_NAM function
to obtain the NAML block, and exit if there's an error.
Dev := Get_FAB_String( Kernel, PID, NAM.NAML_L_LONG_DEV, NAM.NAML_B_LONG_DEV_SIZE,
IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
Dir := Get_FAB_String( Kernel, PID, NAM.NAML_L_LONG_DIR, NAM.NAML_L_LONG_DIR_SIZE,
IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
Name := Get_FAB_String( Kernel, PID, NAM.NAML_L_LONG_NAME, NAM.NAML_L_LONG_NAME_SIZE,
IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
Node := Get_FAB_String( Kernel, PID, NAM.NAML_L_LONG_NODE, NAM.NAML_L_LONG_NODE_SIZE,
IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
Extension := Get_FAB_String( Kernel, PID, NAM.NAML_L_LONG_TYPE, NAM.NAML_L_LONG_TYPE_SIZE,
IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
Ver := Get_FAB_String( Kernel, PID, NAM.NAML_L_LONG_VER, NAM.NAML_L_LONG_VER_SIZE,
IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
Next, we pull all the component parts of the file specification from the NAML block
using the Get_FAB_String function.
if( Dev = '' ) then // No device specified
begin
IOSB.r_io_64.w_status := UE_Error ;
Generate_Exception( UOSErr_Invalid_Device_Name ) ;
exit ;
end ;
if( ( Dir = '' ) and ( Name = '' ) and ( Extension = '' ) and ( Ver = '' ) ) then // Only device
begin
Device := Get_Device( Dev ) ;
if( Device = nil ) then
begin
IOSB.r_io_64.w_status := UE_Error ;
Generate_Exception( UOSErr_Device_Not_Found ) ;
exit ;
end ;
FAB.FAB_L_DEV := Device.Info.Flags ;
IOSB.r_io_64.w_status := Write_User( Kernel, PID, _FAB, FAB.FAB_B_BLN, FAB ) ;
exit ;
end ;
Once we've parsed the specification, we ensure that there is a device specified. We
cannot find a file unless we know which device it resides on. So, if the device name
is null, we exit with an error.
Next we check for a special case: a device name by itself. Generally, if one wants
device information, the GETDVI system service is used. However, we handle the situation
here by checking that the device name corresponds to an actual device (if not, we
return an error). Then we set the FAB_L_DEV flags from the device flags and exit.
// Normalize name...
if( copy( Dev, length( Dev ), 1 ) <> ':' ) then
begin
Dev := Dev + ':' ;
end ;
Dev := Resolve_Symbol( PID, Dev ) ;
P := pos( ':', Dev ) ;
if( ( P > 0 ) and ( P < length( Dev ) ) ) then
begin
Dir := Append_Path( copy( Dev, P + 1, length( Dev ) ), Dir ) ;
Dev := copy( Dev, 1, P ) ;
end ;
Dummy := pos( ':', Dev ) ;
if( Dummy < 2 ) then // Missing device
begin
IOSB.r_io_64.w_status := UE_Error ;
Generate_Exception( UOSErr_Device_Not_Found ) ;
exit ;
end ;
if( copy( Dir, 1, 1 ) <> '\' ) then
begin
Dir := '\' + Dir ;
end ;
if( copy( Dir, length( Dir ), 1 ) <> '\' ) then
begin
Dir := Dir + '\' ;
end ;
Now we normalize the specification. First we make sure the device name ends with a
colon. Then we resolve the symbol in case the device is actually a logical name.
Then we copy anything after the colon to the start of the directory name and trim
it from the device name. If there is no colon after the symbol resolution, we exit
with an error because no device was specified. Then we make sure that the directory
name begins and ends with a backslash.
// Get device and its file system...
Device := Get_Device( copy( Dev, 1, Dummy ) ) ;
if( Device = nil ) then
begin
IOSB.r_io_64.w_status := UE_Error ;
Generate_Exception( UOSErr_Device_Not_Found ) ;
exit ;
end ;
if( not Device.Mounted ) then
begin
IOSB.r_io_64.w_status := UE_Error ;
Generate_Exception( UOSErr_Device_Not_Mounted ) ;
exit ;
end ;
if( Device.FS = nil ) then
begin
IOSB.r_io_64.w_status := UE_Error ;
Generate_Exception( UOSErr_Device_Not_File_Structured ) ;
exit ;
end ;
if( ( Extension <> '' ) and ( copy( Extension, 1, 1 ) <> '.' ) ) then
begin
Extension := '.' + Extension ;
end ;
Next we get the device instance for the specified device, and exit if there is none.
Then we check to make sure the device is mounted and has an associated file system.
If either case isn't true, we exit with an error. Finally, we normalize the file
extension by making sure it starts with a dot, unless it is null. At this point,
we have a completely normalized specification - although, granted, it is in component
pieces.
// Get file information...
Info := Device.FS.Get_File_Info( PChar( Dir + Name + Extension ), 0 ) ;
UE := Device.FS.Last_Error ;
if( ( UE <> nil ) and ( UE.Get_Error <> 0 ) ) then
begin
IOSB.r_io_64.w_status := UE_Error ;
Generate_Exception( UE.Get_Error ) ;
exit ;
end ;
Now we ask the file system for information about the file (combining the components into a single string).
If there was an error, we exit.
// Return information...
Next := FAB.FAB_L_XAB ;
while( Next <> 0 ) do // Until end of XAB chain
begin
// Get XAB code...
Get_User_Data( Kernel, PID, Next, sizeof( Prefix ), Prefix, IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
We will now follow the XAB chain, starting with the FAB_L_XAB pointer, and fill the
various XAB fields with information. Next
contains the current pointer that we are following. Once we hit a null pointer, the
loop ends. The first thing we do in the loop is obtain the prefix (type and length)
of the XAB and exit if there was a error obtaining it from the caller's memory. Because
a given XAB may be one of several types (see previous articles), we have to get the
XAB prefix first to determine which type of XAB to process.
// Based on type of XAB...
if( Prefix.Code = XAB_C_ALL ) then
begin
fillchar( XABALL, sizeof( XABALL ), 0 ) ;
if( Prefix.Length > sizeof( XABALL ) ) then
begin
Prefix.Length := sizeof( XABALL ) ;
end ;
Get_User_Data( Kernel, PID, Next, Prefix.Length, XABALL, IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
Next := XABALL.XAB_L_NXT ;
end else
if( Prefix.Code = XAB_C_DAT ) then
begin
fillchar( XABDAT, sizeof( XABDAT ), 0 ) ;
if( Prefix.Length > sizeof( XABDAT ) ) then
begin
Prefix.Length := sizeof( XABDAT ) ;
end ;
Get_User_Data( Kernel, PID, Next, Prefix.Length, XABDAT, IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
XABDAT.XAB_Q_BDT := Info.Last_Backup ; // Backup date and time
XABDAT.XAB_Q_CDT := Info.Creation ; // Creation date and time
XABDAT.XAB_Q_EDT := Info.Expiration ; // Expiration date and time
XABDAT.XAB_Q_RDT := Info.Last_Modified ; // Revision date and time
XABDAT.XAB_Q_ACC := Info.Last_Access ; // Last access date and time
IOSB.r_io_64.w_status := Write_User( Kernel, PID, Next, Prefix.Length, XABDAT ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
Next := XABDAT.XAB_L_NXT ;
end else
XABALL blocks have to do with RMS allocation information, so there is nothing we do
with that block type, except to get the pointer to the next XAB in the chain. XABDAT
blocks contain date/time information for the file, all of which we can set from the
UOS file information structure that we obtained above.
In either case, we zero out the appropriate XAB structure and then make sure the
block size doesn't exceed the XAB structure's actual size. Next we zero-out the
structure (in case the caller's structure is smaller than the actual XAB). Then
we copy the XAB from the caller's memory to our local structure. After updating the
XABDAT structure, we write the update back to the caller's memory. Obviously, we
exit if there was an error reading or writing the caller's structure.
if( Prefix.Code = XAB_C_FHC ) then
begin
fillchar( XABFHC, sizeof( XABFHC ), 0 ) ;
if( Prefix.Length > sizeof( XABFHC ) ) then
begin
Prefix.Length := sizeof( XABFHC ) ;
end ;
Get_User_Data( Kernel, PID, Next, Prefix.Length, XABFHC, IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
XABFHC.XAB_Q_EOF := Info.EOF ; // End-of-file (logical file length)
XABFHC.XAB_W_VERLIMIT := Info.Version_Limit ; // Version limit for the file
XABFHC.XAB_W_MRS := Info.Record_Size ;
XABFHC.XAB_Q_SIZ := Info.Size ; // Size on disk
XABFHC.XAB_Q_USZ := Info.Uncompressed_Size ; // Uncompressed size
XABFHC.XAB_L_CLS := Info.Clustersize ; // Clustersize
XABFHC.XAB_L_CRE := Info.Creator ; // Creator UIC
XABFHC.XAB_W_FLG := Info.Flags and $FFFF ; // Flags (not including protection codes)
IOSB.r_io_64.w_status := Write_User( Kernel, PID, Next, Prefix.Length, XABFHC ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
Next := XABFHC.XAB_L_NXT ;
end else
For the XABFHC structure, we zero-out and read the structure as we did for the
previous two XAB types. Then we update the non-RMS fields and write the structure
back.
if( Prefix.Code = XAB_C_ITM ) then
begin
fillchar( XABITM, sizeof( XABITM ), 0 ) ;
if( Prefix.Length > sizeof( XABITM ) ) then
begin
Prefix.Length := sizeof( XABITM ) ;
end ;
Get_User_Data( Kernel, PID, Next, Prefix.Length, XABITM, IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
Next := XABITM.XAB_L_NXT ;
end else
if( Prefix.Code = XAB_C_KEY ) then
begin
fillchar( XABKEY, sizeof( XABKEY ), 0 ) ;
if( Prefix.Length > sizeof( XABKEY ) ) then
begin
Prefix.Length := sizeof( XABKEY ) ;
end ;
Get_User_Data( Kernel, PID, Next, Prefix.Length, XABKEY, IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
Next := XABKEY.XAB_L_NXT ;
end else
The XABITM and XABKEY structures are also ignored, for now, and treated as is the
XABALL structure above.
if( Prefix.Code = XAB_C_PRO ) then
begin
fillchar( XABPRO, sizeof( XABPRO ), 0 ) ;
if( Prefix.Length > sizeof( XABPRO ) ) then
begin
Prefix.Length := sizeof( XABPRO ) ;
end ;
Get_User_Data( Kernel, PID, Next, Prefix.Length, XABPRO, IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
XABPRO.XAB_L_UIC := Info.Owner ; // File owner
XABPRO.XAB_W_PRO := ( Info.Flags shr 16 ) and $FFFF ; // File protection
IOSB.r_io_64.w_status := Write_User( Kernel, PID, Next, Prefix.Length, XABPRO ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
Next := XABPRO.XAB_L_NXT ;
end else
The XABPRO structure only has two non-RMS fields. We update those appropriately.
Note that we shift the file flags right to get the file protection code into the XAB_W_PRO
field.
if( Prefix.Code = XAB_C_RDT ) then
begin
fillchar( XABRDT, sizeof( XABRDT ), 0 ) ;
if( Prefix.Length > sizeof( XABRDT ) ) then
begin
Prefix.Length := sizeof( XABRDT ) ;
end ;
Get_User_Data( Kernel, PID, Next, Prefix.Length, XABRDT, IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
Next := XABRDT.XAB_L_NXT ;
end else
if( Prefix.Code = XAB_C_SUM ) then
begin
fillchar( XABSUM, sizeof( XABSUM ), 0 ) ;
if( Prefix.Length > sizeof( XABSUM ) ) then
begin
Prefix.Length := sizeof( XABSUM ) ;
end ;
Get_User_Data( Kernel, PID, Next, Prefix.Length, XABSUM, IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
Next := XABSUM.XAB_L_NXT ;
end else
if( Prefix.Code = XAB_C_TRM ) then
begin
fillchar( XABTRM, sizeof( XABTRM ), 0 ) ;
if( Prefix.Length > sizeof( XABTRM ) ) then
begin
Prefix.Length := sizeof( XABTRM ) ;
end ;
Get_User_Data( Kernel, PID, Next, Prefix.Length, XABTRM, IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status <> 0 ) then
begin
exit ;
end ;
Next := XABTRM.XAB_L_NXT ;
end else
begin
break ; // Unrecognized XAB code
end ;
end ;
end ; // TUOS_FiP.Display
The XABRDT, XABSUM, and XABTRM structures are ignored for now other than as links
in the XAB chain.
procedure Get_NAM( Kernel : TUOS_Kernel ; PID : TPID ; Address : int64 ;
var NAM : TNAML ; var Status : integer ) ;
var I : integer ;
begin
fillchar( NAM, sizeof( NAM ), 0 ) ;
Get_User_Data( Kernel, PID, Address, 2, NAM, Status ) ; // Get type and length
if( Status <> 0 ) then
begin
exit ;
end ;
I := NAM.NAML_B_BLN ;
if( I > sizeof( NAM ) ) then
begin
I := sizeof( NAM ) ;
end ;
Get_User_Data( Kernel, PID, Address, I, NAM, Status ) ; // Get type and length
if( Status <> 0 ) then
begin
exit ;
end ;
end ;
This function obtains a NAML structure from the caller.
function Get_FAB_String( Kernel : TUOS_Kernel ; PID : TPID ; Address, Len : int64 ;
var Status : integer ) : string ;
var SRB : TSRB ;
US : TUOS_String ;
begin
SRB.Buffer := Address ;
SRB.Length := Len ;
US := Get_User_String( Kernel, PID, SRB, Status ) ;
Result := '' ;
if( ( US <> nil ) and ( Status = 0 ) ) then
begin
Result := trim( US.Contents ) ;
end ;
US.Free ;
end ;
This function obtains a string specified by an address and length. We construct
a TSRB structure and use the Get_User_String function to obtain the
string.
function Append_Path( S1, S2 : string ) : string ;
begin
if( ( S1 <> '' ) and ( S2 <> '' ) ) then
begin
if( ( copy( S2, 1, 1 ) <> '\' ) and ( copy( S1, length( S1 ), 1 ) <> '\' ) ) then
begin
S1 := S1 + '\' ;
end ;
end ;
Result := S1 + S2 ;
end ;
This function appends two parts of a path, making sure that the parts are combined
with a single backslash.
That finishes our F$FILE_ATTRIBUTES and SYS_DISPLAY code for the time being. In the
next article, we'll look at the next lexical function.
Copyright © 2020 by Alan Conroy. This article may be copied
in whole or in part as long as this copyright is included.
|