1 Introduction
2 Ground Rules
Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class
The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up
The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup
Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API
Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O
UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation
UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services
UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN
CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND
Glossary/Index
Downloads
|
Lexical Functions - F$DELTA_TIME
Our next lexical function is F$DELTA_TIME. It takes two time specifications and
provides a delta time representing the difference between the two. Here is the definition:
F$DELTA_TIME returns the time difference between to dates.
Format
F$DELTA_TIME(start_time,end_time)
Return Value
A string containing a delta time specification which indicates the difference
between the start and end times. The string has the following format:
+dddd hh:mm:ss.cc
Arguments
start_time
Specifies a string containing an absolute or combination time indicating the starting
date/time. "TODAY", "TOMORROW", and "YESTERDAY" are also allowed.
end_time
Specifies a string containing an absolute or combination time indicating the ending
date/time. "TODAY", "TOMORROW", and "YESTERDAY" are also allowed.
Example
$ X = F$DELTA_TIME("1-JAN-2019 10:10:00","1-JAN-2019 10:30:01")
This would result in X containing "+0:0:20:01".
Function_Delta : begin
if( Missing_Parentheses( '(' ) ) then
begin
exit ;
end ;
if( Parse_Delta_Time( Err, Context ) ) then
begin
exit ;
end ;
if( Missing_Parentheses( ')' ) ) then
begin
exit ;
end ;
Result := tExpression_Node.Create ;
Result.Value := Context ;
end ;
We add code to Function_Reference to handle the lexical function.
function Parse_Delta_Time( var Err : integer ; var Context : string ) : boolean ;
var Start_Time, End_Time : string ;
Starting, Ending : int64 ;
begin
Start_Time := trim( Get_Parameter( Err, Context ) ) ;
if( Err <> 0 ) then
begin
Result := True ;
exit ;
end ;
Result := Missing_Comma( Err ) ;
if( Result ) then
begin
Result := True ;
exit ;
end ;
End_Time := trim( Get_Parameter( Err, Context ) ) ;
if( Err <> 0 ) then
begin
Result := True ;
exit ;
end ;
if( Start_Time = '' ) then
begin
Result := True ;
Err := UCL_IVTIME ;
exit ;
end ;
if( End_Time = '' ) then
begin
Result := True ;
Err := UCL_IVTIME ;
exit ;
end ;
Starting := BINTIM( Start_Time ) ;
if( ( Last_Error <> 0 ) and ( Last_Error <> LIB_ENGLUSED ) ) then
begin
Result := True ;
Err := UCL_IVTIME ;
exit ;
end ;
Ending := BINTIM( End_Time ) ;
if( ( Last_Error <> 0 ) and ( Last_Error <> LIB_ENGLUSED ) ) then
begin
Result := True ;
Err := UCL_IVTIME ;
exit ;
end ;
Starting := Ending - Starting ;
Context := Delta_Time_Representation( Starting ) ;
end ; // Parse_Delta_Time
This function is simple. It gets the start and end time arguments, validates the
command between them, then converts them to internal time stamps with BINTIM ,
and calls Delta_Time_Representation to converst the difference to a
delta specification. We will cover those functions in a moment, but one thing to
note is the comparison of the error with 0 (indicating success) and LIB_ENGLUSED
which simply indicates that the time format defaulted to English. If the error value
is neither, we exit with an error.
function BINTIM( const Time : string ) : int64 ;
var E : integer ;
SRB : TSRB ;
begin
Set_String( Time, SRB ) ;
Result := 0 ;
E := LIB_Convert_Date_String( int64( @SRB ), int64( @Result ), 0, -1 ) ;
if( ( E <> 0 ) and ( E <> LIB_ENGLUSED ) ) then
begin
Result := 0 ; // Signal failure
end ;
Set_Error( E ) ;
end ;
As you may have noticed, the system routines pass string values via the system request
buffer structure (TSRB ). This not only provides for ring 0 access to
outer ring data, but serves as an indirection to whatever string format is used by
whichever language a program is written in. For instance, C and Pascal strings are
implemented differently. Thus, starlet works with any language so long as the program
properly constructs a TSRB structure to pass to the library. However,
using TSRB starts to get tedious in our Pascal code. So we
introduce the PasStarlet library, which is an interface to starlet and system routines
that wraps the calls needing TSRB arguments so that we can call the
routine with Pascal strings. The functions in this library take care of constructing
the TSRB s for the passed strings. They can even unpack result values
and return them as strings. Much of the data returned by system calls also must be
written to a memory location in the program's data space. PasStarlet handles getting
these value and returning them as function results. This simplifies our Pascal code.
The BINTIM function is one of the routines in PasStarlet that performs this service for
us. It takes a string and returns a timestamp value. Inside the routine, we create
a TSRB structure from the passed string, and pass it to Starlet. PasStarlet
uses an error code that can be queried to determine if an error occurred. If an
error happens, the returned timestamp is 0. Note the check for the two possible return
codes from LIB_Convert_Date_String as we discussed above.
Note that we've moved some of the other routines from Starlet into this library (those
that used Pascal strings in parameters), and the Starlet API functions now all use
TSRB instead. But we won't bother to show those code changes here. You
will have noticed, no doubt, the "LIB_" and "SYS_" prefixes used on Starlet and system
routine names. PasStarlet wraps these with functions that lack the prefix. Thus,
BINTIM wraps SYS_BINTIM , which uses TSRB for
the string argument. Alert readers may note "But BINTIM doesn't call SYS_BINTIM ".
This is true. Remember that we talked about the date/time functions being handled
by Starlet routines? SYS_BINTIM is only provided for VMS compatibility,
and turns around to call Starlet. We could have had BINTIM call SYS_BINTIM ,
but that is extra overhead, so they both directly call the Starlet routines.
procedure SYS_BINTIM( timbuf, timadr : int64 ) ;
var E, R : int64 ;
begin
R := 0 ;
E := LIB_Convert_Date_String( TimBuf, int64( @R ) ) ;
if( E <> 0 ) then
begin
R := 0 ; // Signal failure
end ;
PInt64( TimAdr )^ := R ;
end ;
And here is the SYS_BINTIM function, which takes a source address (to a TSRB )
structure, and a target address of an int64. It essentially does the same thing as
BINTIM otherwise.
var _Last_Error : int64 = 0 ;
procedure Set_Error( E : int64 ) ;
begin
_Last_Error := E ;
end ;
function Last_Error : int64 ;
begin
Result := _Last_Error ;
end ;
These routines are for letting internal PasStarlet code set the last error value,
and for external code to obtain the value. Each time a PasStarlet routine exits,
the last error code is set properly (usually 0 indicates success).
function LIB_Convert_Date_String( DateS, DateA : int64 ;
ContextA : int64 = 0 ; Flags : int64 = 0 ; Defaults : int64 = 0 ;
DefaultsA : int64 = 0 ) : int64 ;
var Context : int64 ;
Date : string ;
Def : int64 ;
DTSS : TDTSS ;
SRB : PSRB ;
TimBuf : PTimBuf ;
Timestamp : int64 ;
begin
// Setup...
Result := SS_NORMAL ; // Assume success
Context := 0 ;
if( ContextA <> 0 ) then
begin
if( pint64( ContextA )^ = 0 ) then
begin
pint64( ContextA )^ := int64( TDate_Time_Context.Create ) ;
end ;
Context := pint64( ContextA )^ ;
end ;
SRB := PSRB( DateS ) ;
Date := Get_String( SRB^ ) ;
This Starlet function does some of the work of converting a date/time specification into
a UOS timestamp (most of the work is done by LIB_Parse_Date_Time , which
we discussed three articles ago). The function can do this conversion in accordance with a caller-provided
Date/Time Context instance if desired. If one is provided (neither the address
is 0 nor the instance at that address is 0), then we will use that. Otherwise, the
default date/time context will be used. Then we convert the passed SRB into a Pascal
string, via Get_String , for our use here.
// Parse string and check for issues...
LIB_Parse_Date_Time( Context, Date, DTSS ) ;
if( DTSS.Last_Valid_Position < length( Date ) ) then
begin
Result := LIB_IVTIME ;
exit ;
end ;
if( ( DTSS.Flags and DTF_Error ) <> 0 ) then
begin
Result := LIB_UNRFORCOD ;
exit ;
end ;
if( ( Context <> 0 ) and TDate_Time_Context( pointer( Context ) ).Defaulted_To_English ) then
begin
Result := LIB_ENGLUSED ;
end ;
We call LIB_Parse_Date_Time to fill the DTSS structure.
If the last valid position isn't the last string position, we return an error that
the time passed was invalid. If the error code is set, we return an appropriate
error. In these two cases, we exit. If the context (if there is one) has the
Defaulted_To_English flag set, we return the LIB_ENGLUSED value, but
continue processing - this result is informational, not an error.
// Validate defaults...
Def := 0 ;
if( ( DTSS.Flags and DTF_Defaulted_Year ) <> 0 ) then
begin
if( ( Flags and 1 ) = 0 ) then
begin
Result := LIB_INCDATTIM ;
exit ;
end ;
Def := Def or 1 ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Month ) <> 0 ) then
begin
if( ( Flags and 2 ) = 0 ) then
begin
Result := LIB_INCDATTIM ;
exit ;
end ;
Def := Def or 2 ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Day ) <> 0 ) then
begin
if( ( Flags and 4 ) = 0 ) then
begin
Result := LIB_INCDATTIM ;
exit ;
end ;
Def := Def or 4 ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Hour ) <> 0 ) then
begin
if( ( Flags and 8 ) = 0 ) then
begin
Result := LIB_INCDATTIM ;
exit ;
end ;
Def := Def or 8 ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Minute ) <> 0 ) then
begin
if( ( Flags and 16 ) = 0 ) then
begin
Result := LIB_INCDATTIM ;
exit ;
end ;
Def := Def or 16 ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Second ) <> 0 ) then
begin
if( ( Flags and 32 ) = 0 ) then
begin
Result := LIB_INCDATTIM ;
exit ;
end ;
Def := Def or 32 ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Tenths ) <> 0 ) then
begin
if( ( Flags and 64 ) = 0 ) then
begin
Result := LIB_INCDATTIM ;
exit ;
end ;
Def := Def or 64 ;
end ;
if( DefaultsA <> 0 ) then
begin
move( Def, pchar( pointer( DefaultsA ) )[ 0 ], sizeof( Def ) ) ;
end ;
We next validate that date and time fields that were defaulted were supposed to be
defaulted, according to the flags passed into the function. If something was
defaulted that isn't supposed to be, we exit with the LIB_INCDATTIM code.
// Handle defaults...
if( Defaults <> 0 ) then
begin
TimBuf := PTimBuf( pointer( Defaults ) ) ;
if( ( DTSS.Flags and DTF_Defaulted_Year ) <> 0 ) then
begin
DTSS.Year := TimBuf^.Year ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Month ) <> 0 ) then
begin
DTSS.Month := TimBuf^.Month ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Day ) <> 0 ) then
begin
DTSS.Day := TimBuf^.Day ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Hour ) <> 0 ) then
begin
DTSS.Hour := TimBuf^.Hour ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Minute ) <> 0 ) then
begin
DTSS.Minute := TimBuf^.Minute ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Second ) <> 0 ) then
begin
DTSS.Second := TimBuf^.Second ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Tenths ) <> 0 ) then
begin
DTSS.Billionths := TimBuf^.Billionths ;
end ;
end ;
// Handle delta-only...
if( ( DTSS.Flags and ( DTF_Absolute or DTF_Delta ) ) = DTF_Delta ) then
begin
DTSS.Year := 0 ;
DTSS.Month := 0 ;
DTSS.Day := 0 ;
end ;
If defaults were provided (the Defaults pointer isn't 0), we fill the defaulted
fields from the provided structure. Then, if the parsed date was a delta only, we
fill the year, month, and day fields with 0.
// Construct timestamp...
Timestamp := Encode_Sirius_Timestamp( DTSS.Year, DTSS.Month, DTSS.Day, DTSS.Hour, DTSS.Minute,
DTSS.Second, DTSS.Billionths ) ;
// Handle relative dates...
case DTSS.Relative of
1 : // Yesterday
Timestamp := Timestamp - Day_Value ;
3 : // Tomorrow
Timestamp := Timestamp + Day_Value ;
end ;
We encode the new DTSS fields into a timestamp. Then, if a relative
day was specified, we adjust the timestamp by a day.
// Handle delta values...
if( ( DTSS.Flags and DTF_Negative ) <> 0 ) then
begin
Timestamp := Timestamp - DTSS.Delta_Days * Day_Value ;
Timestamp := Timestamp - DTSS.Delta_Hours * Hour_Value ;
Timestamp := Timestamp - DTSS.Delta_Minutes * Minute_Value ;
Timestamp := Timestamp - DTSS.Delta_Seconds * Second_Value ;
Timestamp := Timestamp - DTSS.Delta_Billionths ;
end else
begin
Timestamp := Timestamp + DTSS.Delta_Days * Day_Value ;
Timestamp := Timestamp + DTSS.Delta_Hours * Hour_Value ;
Timestamp := Timestamp + DTSS.Delta_Minutes * Minute_Value ;
Timestamp := Timestamp + DTSS.Delta_Seconds * Second_Value ;
Timestamp := Timestamp + DTSS.Delta_Billionths ;
end ;
Next we apply any delta values to the timestamp.
if( ( DTSS.Flags and ( DTF_Absolute or DTF_Delta ) ) = DTF_Delta ) then
begin
if( Timestamp > 0 ) then
begin
Timestamp := -Timestamp ;
end ;
end ;
// Write result...
if( DateA <> 0 ) then
begin
move( Timestamp, PChar( pointer( DateA ) )[ 0 ], sizeof( Timestamp ) ) ;
end ;
end ; // LIB_Convert_Date_String
Finally, if the passed date/time consisted solely of a delta specification, we
make sure the resulting timestamp is negative to indicate that. Then we write the
timestamp to the destination.
type TTimbuf = packed record
Year : word ;
Month : word ;
Day : word ;
Hour : word ;
Minute : word ;
Second : word ;
Billionths : cardinal ;
end ;
PTimbuf = ^TTimbuf ;
This is the Time buffer (Timbuf ) structure, used above (and in some
routines we will discuss in the future).
procedure Set_String( const Value : string ; var SRB : TSRB ) ;
begin
SRB.Buffer := int64( PChar( Value ) ) ; // Symbol name
SRB.Length := length( Value ) ;
end ;
function Get_String( const SRB : TSRB ) : string ;
begin
setlength( Result, SRB.Length ) ;
move( PChar( pointer( SRB.Buffer ) )[ 0 ], PChar( Result )[ 0 ], SRB.Length ) ;
end ;
These functions convert between Pascal strings and TSRB .
function Delta_Time_Representation( Time : int64 ) : string ;
var Days : int64 ;
Y, Mo, D, H, M, Sec : word ;
NS : longint ;
begin
Result := '+' ;
if( Time < 0 ) then
begin
Time := -Time ;
Result := Result + '-' ;
end ;
Days := Time div Day_Value ; // Number of days ;
Time := Time - Days * Day_Value ;
Result := Result + inttostr( Days ) + ':' ;
Parse_Sirius_Timestamp( Time, Y, Mo, D, H, M, Sec, NS ) ;
Result := Result + inttostr( H ) + ':' + inttostr( M ) + ':' + inttostr( Sec ) ;
end ;
This function converts a timestamp into a human-readable delta time specification.
We make sure the timestamp is positive (and if negative, we add the minus sign).
Then we parse the timestamp and add the hour, minute, and second to the result.
This wraps up our introduction to UOS date/time code. We will briefly revisit in
the future for a few other system routines. In the next article, we'll continue with
our examination of UCL lexical functions.
Copyright © 2020 by Alan Conroy. This article may be copied
in whole or in part as long as this copyright is included.
|