Copyright © 2016 by Alan Conroy. This article may be copied in whole or in part as long as this copyright is included.


1 Introduction
2 Ground Rules

Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class

The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up

The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup

Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API

Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O

UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation

UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services

UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN

CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND

Glossary/Index


Downloads

Allocation Table

In the previous article, we described the UOS Managed Store. That class uses an allocation table class, which we'll examine here. Here is the abstract class definition:

type TCOM_Allocator64 = class( TBase_Delphi_Object )
                           public { API... }
                               function Get_Offset : TStore_Address64 ;
                                   virtual ; abstract ;
                               function Get_Resolution : cardinal ;
                                   virtual ; abstract ;
                               function Get_Size : cardinal ; virtual ;
                                   abstract ;
                               function Get_Store : TCOM_Store64 ; virtual ;
                                   abstract ;

                               procedure Set_Offset( Value : TStore_Address64 ) ;
                                   virtual ; abstract ;
                               procedure Set_Resolution( Value : cardinal ) ;
                                   virtual ; abstract ;
                               procedure Set_Size( Value : cardinal ) ;
                                   virtual ; abstract ;
                               procedure Set_Store( Value : TCOM_Store64 ) ;
                                   virtual ; abstract ;

                           public { API... }
                               procedure Flush ; virtual ;
                                   abstract ;
                               function Allocate( Size : TStore_Address64 ) : TStore_Address64 ;
                                   virtual ; abstract ;
                               function Allocate_At( Pos, Size : TStore_Address64 ) : boolean ;
                                   virtual ; abstract ;
                               procedure Deallocate( PTR : TStore_Address64 ;
                                   Size : TStore_Address64 ) ; virtual ;
                                   abstract ;
                               procedure Load_Table ; virtual ; abstract ;
                               function MaxSpace : TStore_Size64 ; virtual ; abstract ;
                               function SpaceAvail : TStore_Size64 ; virtual ; abstract ;
                               function Get_Data : pointer ; virtual ; abstract ;
                               procedure Set_Data( Value : pointer ;
                                   Size : cardinal ) ; virtual ; abstract ;
                       end ; { TCOM_Allocator64 }

And here is the definition for our allocation table class:
     TAT64 = class( TCOM_Allocator64 )
               public { Constructors and destructors... }
                   constructor Create( _Resolution : cardinal ) ;
                   destructor Destroy ; override ;

               private { Instance data... }
                   _AT : pByte_Array ; // Allocation table image
                   Byte_Mapping : cardinal ; 
		   // How much storage is mapped by one byte (8*Resolution)
                   _Offset : TStore_Address64 ; { AT offset in store }
                   _Size : cardinal ; { AT size, in bytes }
                   _Store : TCOM_Store64 ; { Store where table is saved }
                   Lowest_Free_Space : TStore_Address64 ; { Address of lowest unallocated space }
                   Modified : boolean ; { True if unsaved modifications }
                   Resolution : cardinal ; { How many bytes each bit represents }

               private { Internal utility routines... }
                   function AT : pByte_Array ;

               public { API... }
                   function Get_Modified : boolean ; virtual ;
                   function Get_Offset : TStore_Address64 ; override ;
                   function Get_Resolution : cardinal ; override ;
                   function Get_Size : cardinal ; override ;
                   function Get_Store : TCOM_Store64 ; override ;

                   procedure Set_Modified( Value : boolean ) ; virtual ;
                   procedure Set_Offset( Value : TStore_Address64 ) ; override ;
                   procedure Set_Resolution( Value : cardinal ) ; override ;
                   procedure Set_Size( Value : cardinal ) ; override ;
                   procedure Set_Store( Value : TCOM_Store64 ) ; override ;

               public { API... }
                   procedure Flush ; override ; { Write AT changes to store }
                   function Allocate( Size : TStore_Address64 ) : TStore_Address64 ;
                       override ;
                   function Allocate_At( Pos, Size : TStore_Address64 ) : boolean ;
                       override ;
                   procedure Deallocate( PTR : TStore_Address64 ;
                       Size : TStore_Size64 ) ; override ;
                   function Debugger : TDebug_Interface ; override ;
                   procedure Load_Table ; override ;
                   function MaxSpace : TStore_Size64 ; override ;
		           function SpaceAvail : TStore_Size64 ; override ;
                   function Get_Data : pointer ; override ;
                   procedure Set_Data( Value : pointer ; Size : cardinal ) ;
                       override ;
           end ; { TAT64 }

Essentially, the class does nothing more than manage an array of bits. In all cases of manipulating the bits, we have to map from a byte address on the store into a byte offset and bit(s) within the allocation table. The comments on the instance data explain what they are used for. Here are our constructors, destructors, getters, and setters.

constructor TAT64.Create( _Resolution : cardinal ) ;

begin
    inherited Create ;

    Resolution := _Resolution ;
    Byte_Mapping := 8 * Resolution ; { How much one AT byte maps }
end ;


destructor TAT64.Destroy ;

begin
    Flush ; { Update store }
    Set_Size( 0 ) ; { Clear cache }

    inherited Destroy ;
end ;


function TAT64.Get_Modified : boolean ;

begin
    Get_Modified := Modified ;
end ;


function TAT64.Get_Offset : TStore_Address64 ;

begin
    Get_Offset := _Offset ;
end ;


function TAT64.Get_Resolution : cardinal ;

begin
    Get_Resolution := Resolution ;
end ;


function TAT64.Get_Size : cardinal ;

begin
    Get_Size := _Size ;
end ;


function TAT64.Get_Store : TCOM_Store64 ;

begin
    Get_Store := _Store ;
end ;


procedure TAT64.Set_Modified( Value : boolean ) ;

begin
    Modified := Value ;
end ;


procedure TAT64.Set_Offset( Value : TStore_Address64 ) ;

begin
    if( _Offset <> Value ) then
    begin
        _Offset := Value ;
    end ;
end ;


procedure TAT64.Set_Resolution( Value : cardinal ) ;

begin
    if( Value <> Resolution ) then
    begin
        Resolution := Value ;
    end ;
end ;


procedure TAT64.Set_Size( Value : cardinal ) ;

begin
    if( _Size <> Value ) then
    begin
        if( _AT <> nil ) then
        begin
            reallocmem( pointer( _AT ), _Size, Value ) ;
        end ;
        _Size := Value ;
    end ;
end ; { TAT64.Set_Size }


procedure TAT64.Set_Store( Value : TCOM_Store64 ) ;

var C : int64 ;

begin
    if( Value <> nil ) then
    begin
        Value.Attach ;
        if( Resolution < Value.Min_Storage ) then
        begin
            Resolution := Value.Min_Storage ;
        end ;
        C := Value.Max_Storage div Resolution ; // Total clusters on store
        _Size := C div 8 ; // Size of AT
        Byte_Mapping := 8 * Resolution ; { How much one AT byte maps }
    end ;
    if( _Store <> nil ) then
    begin
        _Store.Detach ;
    end ;
    _Store := Value ;
end ;

In the case of the size being set, we make sure to reallocate the AT buffer so it is the correct size. When the store is set, we recalculate the AT size. In general, we will call either Set_Size or Set_Store, but not both.

Our internal utility routine allows us to delay the allocation of the Allocation Table buffer (AT) until we need to access it.

function TAT64.AT : pByte_Array ;

begin
    if( _AT = nil ) then
    begin
        _AT := Allocmem( _Size ) ;
        fillchar( _AT^, _Size, 0 ) ;
        _AT^[ 0 ] := 1 ; // Lowest cluster is always allocated
        Lowest_Free_Space := Resolution ;
    end ;
    Result := _AT ;
end ;

Now to the meat of the class:

procedure TAT64.Flush ; { Write AT changes to store }

var UEC : TUnified_Exception ;

begin
    if( ( _Offset <> 0 ) and ( _Store <> nil ) and Modified ) then
    begin
        _Store.Write_Data( AT^, _Offset, _Size, UEC ) ;
        Set_Last_Error( UEC ) ;
        Modified := False ;
    end ;
end ; { TAT64.Flush }

We don't write the allocation table to the store until explicitly requested to, so this method isn't called within our class. The one exception is in the destructor, where we do call Flush. If the calling code doesn't want the table written, it should set the offset to 0 before destructing the class.
procedure TAT64.Load_Table ; { Load from store }

var Dummy : TRecord_Size ;
    P : TStore_Address ;
    U_E : TUnified_Exception ;

begin
    if( ( _Store <> nil ) and ( _Size > 0 ) ) then
    begin
        P := _Offset ;
        Dummy := _Store.Read_Data( AT^, P, _Size, U_E ) ;
        if( Dummy <> _Size ) then
        begin
            Set_Last_Error( Create_Exception( AT_Error_Load_Failure, _Store.Last_Error ) ) ;
            exit ;
        end ;
        Modified := False ;
    end ;
end ;

Load_Table reads the allocation table in from the store - the inverse of Flush.

Let's look at the allocation methods, whose purpose is to locate free space, mark it as used, and then return the address of the newly allocated area.

function TAT64.Allocate( Size : TStore_Address64 ) : TStore_Address64 ;
{ Allocate Size bytes and return pointer.  Return 0 if error. }

var AT_Byte, AT_Bit : integer ; { Current byte and bit within AT }
    Counter : TStore_Size64 ;
    Offset : TStore_Address64 ;
    Offset_Byte, Offset_Bit : cardinal ;

    procedure Set_Start ;

    begin
        Offset := AT_Byte ; { Allocation table byte offset }
        Offset := Offset * Byte_Mapping + AT_Bit * Resolution ; { Remember start }
        Offset_Byte := AT_Byte ;
        Offset_Bit := AT_Bit ;
    end ;

begin
    Allocate := 0 ; { Return zero (0) if error }
    if( Size < 1 ) then { Cannot allocate nothing, or less than nothing }
    begin
        exit ;
    end ;
    Size := ( Size + Resolution - 1 ) and ( not ( Resolution - 1 ) ) ;
    { Allocate minimum multiple bytes at a time }
    AT_Byte := Lowest_Free_Space div Byte_Mapping ;
    if( AT_Byte + ( ( Size div Resolution + 7 ) div 8 ) > _Size ) then // More space than we have
    begin
        exit ;
    end ;

    { Find a place where we can allocate the requested space... }
    Offset := 0 ; { So we know if allocation failed }
    { Start at the beginning }

    AT_Bit := 0 ;
    Counter := 0 ; { Number of bytes available in current segment }
    while( Counter < Size ) do { Find necessary free space }
    begin
        if( AT^[ AT_Byte ] = 255 ) then { No room in entire byte }
        begin
            Counter := 0 ;
            AT_Bit := 7 ; { Skip rest of bits in this byte }
        end else
        begin
            if(
                ( AT_Bit = 0 )
                and
                ( Size - Counter >= Byte_Mapping )
                and
                ( AT^[ AT_Byte ] = 0 )
              ) then
            begin { Quick check for entire byte }
                if( Counter = 0 ) then
                begin
                    Set_Start ;
                end ;
                Counter := Counter + Byte_Mapping ;
                AT_Bit := 7 ;
                if( Counter >= Size ) then
                begin
                    break ;
                end ;
            end else
            begin { Check bit by bit }
                if( ( AT^[ AT_Byte ] and Bit_Values[ AT_Bit ] ) = 0 ) then
                begin
                    if( Counter = 0 ) then { New/first free block }
                    begin
                        Set_Start ;
                    end ;
                    Counter := Counter + Resolution ; { Count up free bytes }
                    if( Counter >= Size ) then
                    begin
                        break ;
                    end ;
                end else { Ran out of free blocks before we found sufficient space }
                begin
                    Counter := 0 ; { Start over }
                end ;
            end ;
        end ;
        inc( AT_Bit ) ; { Check next bit of current byte }
        if( AT_Bit > 7 ) then { Ran out of bits on this byte }
        begin
            AT_Bit := 0 ; { Start at first bit of next byte }
            inc( AT_Byte ) ; { Move to next byte }
            if( AT_Byte >= _Size ) then { AT was not big enough }
            begin
                exit ;
            end ; { if( AT_Byte > Segment_Size ) }
        end ; { if( AT_Bit > 7 ) }
    end ; { while( Counter > _Size ) }

    { Now mark space as allocated in AT... }
    AT_Byte := Offset_Byte ;
    AT_Bit := Offset_Bit ;
    while( Counter > 0 ) do
    begin
        Modified := True ;
        if( ( AT_Bit = 0 ) and ( Counter >= Byte_Mapping ) ) then
        begin { Quick check for entire byte }
            AT^[ AT_Byte ] := 255 ;
            Counter := Counter - Byte_Mapping ;
            AT_Bit := 7 ;
            if( Counter <= 0 ) then
            begin
                break ;
            end ;
        end else
        begin
            AT^[ AT_Byte ] := AT^[ AT_Byte ] or Bit_Values[ AT_Bit ] ; { Mark as used }
            Counter := Counter - Resolution ;
        end ;
        inc( AT_Bit ) ; { Check next bit of current byte }
        if( AT_Bit > 7 ) then { Ran out of bits on this byte } if( Counter > 0 ) then
        { ...and not yet finished }
        begin
            AT_Bit := 0 ; { Start at first bit... }
            inc( AT_Byte ) ; {...of next byte}
        end ; { if( AT_Bit > 7 ) }
    end ; { while Counter > 0 }
    Modified := True ;
    Allocate := Offset ; { Return offset of allocation }
    if( Offset <> 0 ) then
    begin
        if( Offset = Lowest_Free_Space ) then
        begin
            Lowest_Free_Space := Lowest_Free_Space + Size ;
        end ;
    end ;
end ; { TAT64.Allocate }

The first step of the routine is to find an area of contiguous unset bits in the allocation table that match, or exceed, the requested size. Once located, we then set the corresponding bits. This algorithm will locate the first area that is large enough for the requested size. In some algorithms the process is to find the smallest area that is largest enough to fit the request. This approach would result in less fragmented space, but is more complex code with slightly less performance. Since we will be writing a disk defragmentor to optimize the file system structure, we can dispense with the extra complexity here and allow the defragmentor to reduce the fragmentation on the store.
function TAT64.Allocate_At( Pos, Size : TStore_Address64 ) : boolean ;

var AT_Byte, AT_Bit : longint ; { Current byte and bit within AT }
    Counter : TStore_Size64 ;

begin
    Allocate_At := False ; { Return false if error }
    if( ( Size < 1 ) or ( Pos < 1 ) ) then
    begin
        exit ; { Cannot allocate nothing, or at an invalid position }
    end ;
    Size := ( Size + Resolution - 1 ) and ( not ( Resolution - 1 ) ) ;
    { Allocate minimum multiple bytes at a time }

    AT_Byte := Pos div Byte_Mapping ;
    if( AT_Byte >= _Size ) then // Not enough room
    begin
        exit ;
    end ;
    AT_Bit := ( Pos - ( AT_Byte * Byte_Mapping ) ) div Resolution ;
    Counter := 0 ; { Number of bytes available in current segment }
    while( Counter < Size ) do { Check for necessary free space }
    begin
        if(
            ( AT_Bit = 0 )
            and
            ( Size - Counter >= Byte_Mapping )
            and
            ( AT^[ AT_Byte ] = 0 )
          ) then
        begin { Quick check for entire byte }
            Counter := Counter + Byte_Mapping ;
            AT_Bit := 7 ;
            if( Counter >= Size ) then
            begin
                break ;
            end ;
        end else
        begin { Check bit by bit }
            if( ( AT^[ AT_Byte ] and Bit_Values[ AT_Bit ] ) = 0 ) then
            begin
                Counter := Counter + Resolution ; { Count up free bytes }
                if( Counter >= Size ) then
                begin
                    break ;
                end ;
            end else
            begin
                exit ; { Insufficient space at location }
            end ;
        end ;
        inc( AT_Bit ) ; { Check next bit of current byte }
        if( AT_Bit > 7 ) then { Ran out of bits on this byte }
        begin
            AT_Bit := 0 ; { Start at first bit of next byte }
            inc( AT_Byte ) ; { Move to next byte }
        end ; { if( AT_Bit > 7 ) }
    end ; { while( Counter > _Size ) }

    { Now mark space as allocated in AT... }
    AT_Byte := Pos div Byte_Mapping ;
    AT_Bit := ( Pos - ( AT_Byte * Byte_Mapping ) ) div Resolution ;
    while( Counter > 0 ) do
    begin
        Modified := True ;
        if( ( AT_Bit = 0 ) and ( Counter >= Byte_Mapping ) ) then
        begin { Quick check for entire byte }
            AT^[ AT_Byte ] := 255 ;
            Counter := Counter - Byte_Mapping ;
            AT_Bit := 7 ;
            if( Counter <= 0 ) then
            begin
                break ;
            end ;
        end else
        begin
            AT^[ AT_Byte ] := AT^[ AT_Byte ] or Bit_Values[ AT_Bit ] ; { Mark as used }
            Counter := Counter - Resolution ;
        end ;
        inc( AT_Bit ) ; { Check next bit of current byte }
        if( AT_Bit > 7 ) then { Ran out of bits on this byte } if( Counter > 0 ) then
        { ...and not yet finished }
        begin
            AT_Bit := 0 ; { Start at first bit... }
            inc( AT_Byte ) ; {...of next byte}
        end ; { if( AT_Bit > 7 ) }
    end ; { while Counter > 0 }
    Modified := True ;
    Allocate_At := True ; { Success }
    if( Pos = Lowest_Free_Space ) then
    begin
        Lowest_Free_Space := Lowest_Free_Space + Size ;
    end ;
end ; { TAT64.Allocate_At }

Allocate_At allows us to request an allocation at a specific location on the store, rather than where ever the Allocate decides. This is used to place heavily used files at locations on disks that will minimize the amount of disk head movement. Allocate_At essentially works the same as Allocate, but starts looking at the requested position. If the requested space is not available at the requested position, the function exits with a result of False. Otherwise, the bits are set and True is returned.
procedure TAT64.Deallocate( PTR : TStore_Address64 ; Size : TStore_Address64 ) ;

var AT_Byte, AT_Bit : longint ;

begin
    if( ( Size < 1 ) or ( PTR < Resolution ) ) then
    begin
        exit ;
    end ;
    Size := ( Size + Resolution - 1 ) and ( not ( Resolution - 1 ) ) ;
    { Deallocate minimum multiple bytes at a time }

    if( Lowest_Free_Space > PTR ) then
    begin
        Lowest_Free_Space := PTR ;
    end ;

    AT_Byte := PTR div Byte_Mapping ;
    PTR := PTR - AT_Byte * Byte_Mapping ;
    AT_Bit := PTR div Resolution ;
    while( Size > 0 ) do
    begin
        if( ( AT_Bit = 0 ) and ( Size >= Byte_Mapping ) ) then
        begin
            AT_Bit := 7 ;
            AT^[ AT_Byte ] := 0 ;
            Size := Size - Byte_Mapping ;
        end else
        begin
            AT^[ AT_Byte ] := AT^[ AT_Byte ] and ( not Bit_Values[ AT_Bit ] ) ;
            Size := Size - Resolution ;
        end ;

        if( Size > 0 ) then
        begin
            inc( AT_Bit ) ;
            if( AT_Bit > 7 ) then
            begin
                AT_Bit := 0 ; { Move to first bit... }
                inc( AT_Byte ) ; { ...of next byte }
                if( AT_Byte = _Size ) then
                begin
                    Modified := True ;
                    Size := 0 ; { Done if at end of AT }
                end ;
            end ; { if AT_Bit > 7 }
        end ; { if _Size > 0 }
    end ; { while _Size > 0 }
    Modified := True ;
end ; { TAT64.Deallocate }

The Deallocate routine works similarly to the Allocate routine, but sets the AT bits to 0 - and no searching for contiguous space is required. It is possible, with this routine, to deallocate space that wasn't allocated in the first place. This is not an error, per se, although it may indicate an error in the code that calls the method. Since nothing is harmed by this we don't bother to check for the condition. Deallocating the allocation table itself may cause problems, but we don't try to prevent it since it could be part of a valid process - such as moving the allocation table to a different part of the store. Basically, if the calling code is buggy, we can't do much about it here.
function TAT64.MaxSpace : TStore_Size64 ; { Return largest contiguous space }

var AT_Byte, AT_Bit : integer ; { Current byte and bit within AT }
    Counter, Max : TStore_Size64 ;

begin
    Result := 0 ;
    AT_Byte := Lowest_Free_Space div Byte_Mapping ;
    if( AT_Byte >= _Size ) then
    begin
        exit ;
    end ;
    AT_Bit := 0 ;
    Counter := 0 ; { Number of bytes available in current segment }
    Max := 0 ; { Maximum space found }
    while( AT_Bit <= 7 ) do { Find free space }
    begin
        if( ( AT_Bit = 0 ) and ( AT^[ AT_Byte ] = 0 ) ) then
        begin
            Counter := Counter + Byte_Mapping ;
            AT_Bit := 7 ;
        end else
        if( ( AT^[ AT_Byte ] and Bit_Values[ AT_Bit ] ) = 0 ) then
        begin
            Counter := Counter + Resolution ; { Count up free bytes }
        end else
        begin { Ran out of free blocks }
            if( Counter > Max ) then
            begin
                Max := Counter ;
            end ;
            Counter := 0 ; { Start over }
        end ;
        inc( AT_Bit ) ; { Check next bit of current byte }
        if( AT_Bit > 7 ) then { Ran out of bits on this byte }
        begin
            AT_Bit := 0 ; { Start at first bit of next byte }
            inc( AT_Byte ) ; { Move to next byte }
            if( AT_Byte >= _Size ) then { AT was not big enough }
            begin
                AT_Bit := 8 ; { Terminate loop }
                if( Counter > Max ) then
                begin
                    Max := Counter ;
                end ;
            end ; { if AT_Byte >= AT_Segment_Size }
        end ; { if AT_Bit > 7 }
    end ; { while AT_Bit <= 7 }
    MaxSpace := Max ;
end ; { TAT64.MaxSpace }


function TAT64.SpaceAvail : TStore_Size64 ;
{ Return available space within table }

var AT_Byte, AT_Bit : integer ; { Current byte and bit within AT }
    Counter : longint ;

begin
    Result := 0 ;
    AT_Byte := Lowest_Free_Space div Byte_Mapping ;
    if( AT_Byte >= _Size ) then
    begin
        exit ;
    end ;
    AT_Bit := 0 ;
    Counter := 0 ; { Number of bytes available in current segment }
    while( AT_Bit <= 7 ) do { Find free space }
    begin
        if( ( AT_Bit = 0 ) and ( AT^[ AT_Byte ] = 0 ) ) then // Whole byte is free
        begin
            Counter := Counter + Byte_Mapping ;
            AT_Bit := 8 ;
        end else
        begin
            if( ( AT^[ AT_Byte ] and Bit_Values[ AT_Bit ] ) = 0 ) then
            begin
                Counter := Counter + Resolution ; { Count up free bytes }
            end ;
            inc( AT_Bit ) ; { Check next bit of current byte }
        end ;
        if( AT_Bit > 7 ) then { Ran out of bits on this byte }
        begin
            AT_Bit := 0 ; { Start at first bit of next byte }
            inc( AT_Byte ) ; { Move to next byte }
            if( AT_Byte >= _Size ) then { AT was not big enough }
            begin
                AT_Bit := 8 ; { Terminate loop }
            end ;
        end ;
    end ;
    SpaceAvail := Counter ;
end ; { TAT64.SpaceAvail }

MaxSpace and SpaceAvail read the unset bits in the allocation table, add up the space and return it. The difference is that MaxSpace locates the largest contiguous set of unset bits, whereas SpaceAvail returns the total unallocated space.
function TAT64.Get_Data : pointer ;

begin
    Result := AT ;
end ;


procedure TAT64.Set_Data( Value : pointer ; Size : cardinal ) ;

var P : pointer ;

begin
    if( _Size < Size ) then
    begin
        P := AT ;
        reallocmem( P, Size, _Size ) ;
        _AT := P ;
        _Size := Size ;
    end ;
    move( Value^, AT^, Size ) ;
end ;

The final methods allow direct access to the allocation table data. This is to allow the file system to rebuild the on-store structure when needed.

In the next article, we will address some other classes that our file system will need.