1 Introduction
2 Ground Rules
Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class
The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up
The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup
Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API
Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O
UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation
UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services
UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN
CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND
Glossary/Index
Downloads
|
LIB_CVTIME
In the previous article, we examined the F$CVTIME lexical function, which is
merely a UCL wrapper for the LIB_CVTIME function. We will address this in a bit,
but first we need to talk about UOS time support.
In VMS, time support routines are placed in the VMS executive. In UOS, all date
and time functions (other than to get or set the system time) are placed in Starlet,
which is ring 3 code. Remember, our philosophy is to minimize what is in the UOS
executive. We decided that the only things that need to be in the executive are
those things which we need to protect from malicious or flawed code, or which must
be centralized rather than be handled on a per-process basis. This approach means
that interpretation and formatting of date and time does not belong in the executive.
Frankly, I think it is bad design for it to be in the VMS executive, but no one
asked me. Starlet is part of UOS and contains all of the date and time handling
code that can be used by any program. As mentioned above, only the actually
setting and getting of the current system time is enscounced in the executive.
Thus, all programs can use a standardized means of dealing with dates and times,
but the actual code resides in a library that is linked to programs in the application
ring.
As a consequence, several VMS system routines are actually handled by starlet in
UOS. For compatibility with VMS, the Sys unit will include these VMS system
calls, but they will be redirected to Starlet.
const CVF_Absolute = 0 ; // Absolute date/time output format
const CVF_Comparison = 1 ; // yyyy-mm-dd hh:mm:ss.cc output format
const CVF_Delta = 2 ; // Delta format
const CVO_DateTime = 0 ;
const CVO_Date = 1 ;
const CVO_Time = 2 ;
const CVO_Hour = 3 ;
const CVO_Second = 4 ;
const CVO_Minute = 5 ;
const CVO_Hundredth = 6 ;
const CVO_Day = 7 ;
const CVO_Month = 8 ;
const CVO_Weekday = 9 ;
const CVO_Year = 10 ;
const CVO_DayofYear = 11 ;
const CVO_HourofYear = 12 ;
const CVO_MinuteofYear = 13 ;
const CVO_SecondofYear = 14 ;
const DTF_Defaulted_Year = 1 ; // The year was defaulted (omitted in input string)
const DTF_Defaulted_Month = 2 ;
const DTF_Defaulted_Day = 4 ;
const DTF_Defaulted_Hour = 8 ;
const DTF_Defaulted_Minute = 16 ;
const DTF_Defaulted_Second = 32 ;
const DTF_Defaulted_Tenths = 64 ;
const DTF_Defaulted_Meridium = 128 ;
const DTF_Negative = 256 ; // Delta date is negative (past)
const DTF_Absolute = 512 ; // Absolute date supplied
const DTF_Delta = 1024 ; // Delta date supplied
const DTF_Error = 2048 ; // Error in input format specification
type TDTSS = packed record
Quoted : boolean ;
Last_Valid_Position : integer ;
Year : word ;
Month, Day, Hour, Minute, Second : byte ;
Billionths : int64 ;
Meridium : byte ;
Weekday : byte ;
Delta_Days, Delta_Hours, Delta_Minutes, Delta_Seconds : word ;
Delta_Billionths : int64 ;
Relative : byte ; // 0 = none, 1 = yesterday, 2 = today, 3=tomorrow
Flags : integer ; // See DTF_*
end ;
The CVF_ and CVO_ constants are used by the LIB_CVTIME function, which
we'll discuss shortly. The DTF_ constants are used to as flags for the Flags
item in the TDTSS record. This structure is used to store the results
of parsing a date/time specification.
function LIB_CVTime( var Time : string ; Format, Output : word ) : cardinal ;
var DTSS : TDTSS ;
Timestamp : int64 ;
Year_Start_Timestamp : int64 ;
Y, Mo, D, H, M, Sec : word ;
NS : longint ;
SRB : TSRB ;
Len : int64 ;
begin
fillchar( DTSS, sizeof( DTSS ), 0 ) ;
if( Time = '' ) then
begin
Timestamp := LIB_Get_Timestamp ; // Default to current time
DTSS.Flags := DTF_Absolute ; // Absolute date supplied
Parse_Sirius_Timestamp( TimeStamp, Y, Mo, D, H, M, Sec, NS ) ;
DTSS.Year := Y ;
DTSS.Month := Mo ;
DTSS.Day := D ;
DTSS.Hour := H ;
DTSS.Minute := M ;
DTSS.Second := Sec ;
DTSS.Billionths := NS ;
end else
begin
LIB_Parse_Date_Time( 0, Time, DTSS ) ;
end ;
First, we zero the DTSS struture. If no time was passed, we get the current time
via LIB_Get_Timestamp, parse the timestamp via Parse_Sirius_Timestamp, and set
the various DTSS fields appropriately. If a time value is passed, we call the
LIB_Parse_Date_Time function to fill DTSS. We will discuss
LIB_Get_Timestamp in another article and LIB_Parse_Date_Time later in this article.
if( Output >= CVO_DayofYear ) then
begin
Year_Start_Timestamp := Encode_Sirius_Timestamp( DTSS.Year, 1, 1, 0, 0, 0, 0 ) ;
end ;
If the requested output is Dayofyear, HourofYear, MinuteofYear, or SecondofYear, we
need to have the timestamp of the beginning of the year in order to make the
calculation.
if( Format = CVF_Delta ) then // Requested delta format
begin
if( Time = '' ) then
begin
fillchar( DTSS, sizeof( DTSS ), 0 ) ;
end else
if( ( DTSS.Flags and DTF_Delta ) = 0 ) then // Supplied date wasn't delta
begin
Result := LIB_EVDTIME ;
exit ;
end else
if( Output >= CVO_Day ) then
begin
Result := LIB_BADTOPT ;
exit ;
end ;
end ;
if( ( DTSS.Flags and DTF_Delta ) <> 0 ) then // Supplied date was delta
begin
if( Format <> CVF_Delta ) then // Did not request delta format
begin
Result := LIB_EVDTIME ;
exit ;
end ;
end ;
If delta format is requested, and the input date wasn't delta, we return with an
error. If the requested output is Dayofyear, HourofYear, MinuteofYear, or
SecondofYear, we return an error, because those make no sense for a delta time.
If the requested format is delta and no input time is specified, it is treated
as a delta offset from the current date/time, which is a delta value of +0:00:00:00.00,
so we zero the DTSS fields. If the supplied date was a delta but the requested
format wasn't delta, we return an error.
Time := '' ;
case Output of
CVO_DateTime, CVO_Date, CVO_Time : ; // Handled later
CVO_Hour : Time := inttostr( DTSS.Hour ) ;
CVO_Second : Time := inttostr( DTSS.Second ) ;
CVO_Minute : Time := inttostr( DTSS.Minute ) ;
CVO_Hundredth : Time := inttostr( DTSS.Billionths div 10000000 ) ;
CVO_Day : Time := inttostr( DTSS.Day ) ;
CVO_Month : Time := inttostr( DTSS.Month ) ;
CVO_Weekday :
Time := Default_Time_Context.Parsed_List( LIB_K_WEEKDAY_NAME_C )[ ( ( Timestamp div Day_Value )
- 1 ) mod 7 ] ;
CVO_Year : Time := inttostr( DTSS.Year ) ;
CVO_DayofYear : Time := inttostr( ( Timestamp - Year_Start_Timestamp ) div Day_Value ) ;
CVO_HourofYear : Time := inttostr( ( Timestamp - Year_Start_Timestamp ) div Hour_Value ) ;
CVO_MinuteofYear : Time := inttostr( ( Timestamp - Year_Start_Timestamp ) div Minute_Value ) ;
CVO_SecondofYear : Time := inttostr( ( Timestamp - Year_Start_Timestamp ) div Second_Value ) ;
else
begin
Result := LIB_EVDTIME ;
exit ;
end ;
end ;
Now that the preliminaries are out of the way, we set the function result to null.
Then, based on the requested output format, we do the appropriate processing.
The Datetime, Date, and Time formats are handled later. For second, minute, hour,
day, month, year, or hundreths, we simply return the appropriate value from DTSS.
For the weekday, we take the timestamp and divide by the number of nanoseconds in a day.
This gives us the number of days since Jan 1, year 0. We then mod (division remainer)
the time by 7. Projecting the Gregorian date back, the first day of year
0 is Sunday. So we can use the calculated value in the parsed_List value of the
Default_Time_Context. Note that we subtract 1 to convert from a 0-based day to a
1-based offset into the parsed list. Otherwise we calculate offsets from the beginning of the
year, as appropriate. We will discuss Time contexts and the Default_Time_Context
function in the next article.
if( Format = CVF_Absolute ) then // Absolute date/time output format
begin
case Output of
CVO_DateTime : Time := Get_Absolute( 0, Result ) ;
CVO_Date : Time := Get_Absolute( 2, Result ) ;
CVO_Time : Time := Get_Absolute( 1, Result ) ;
end ;
end else
If the requested output format is Absolute, and the output time is DateTime, Date,
or Time, we get the absolute time. We'll discuss Get_Absolute later
in this article.
if( Format = CVF_Comparison ) then // yyyy-mm-dd hh:mm:ss.cc output format
begin
case Output of
CVO_DateTime : Time := LPad( inttostr( DTSS.Year ), 4, '0' ) + '-' +
LPad( inttostr( DTSS.Month ), 2, '0' ) + '-' +
LPad( inttostr( DTSS.Day ), 2, '0' ) + ' ' +
LPad( inttostr( DTSS.Hour ), 2, '0' ) + ':' +
LPad( inttostr( DTSS.Minute ), 2, '0' ) + ':' +
LPad( inttostr( DTSS.Second ), 2, '0' ) + '.' +
copy( LPad( inttostr( DTSS.Billionths ), 9, '0' ), 1, 2 ) ;
CVO_Date : Time := LPad( inttostr( DTSS.Year ), 4, '0' ) + '-' +
LPad( inttostr( DTSS.Month ), 2, '0' ) + '-' +
LPad( inttostr( DTSS.Day ), 2, '0' ) ;
CVO_Time : Time := LPad( inttostr( DTSS.Hour ), 2, '0' ) + ':' +
LPad( inttostr( DTSS.Minute ), 2, '0' ) + ':' +
LPad( inttostr( DTSS.Second ), 2, '0' ) + '.' +
copy( LPad( inttostr( DTSS.Billionths ), 9, '0' ), 1, 2 ) ;
end ;
end else
If the requested output format is comparison, and the output time is DateTime, Date,
or Time, we build the comparison time from the DTSS fields.
if( Format = CVF_Delta ) then // Delta format
begin
case Output of
CVO_Hour : Time := '+0:' + inttostr( DTSS.Hour ) ;
CVO_Second : Time := '+0:0:0:' + inttostr( DTSS.Second ) ;
CVO_Minute : Time := '+0:0:' + inttostr( DTSS.Minute ) ;
CVO_Hundredth : Time := '+0:0:0:0.' + inttostr( DTSS.Billionths div 10000000 ) ;
CVO_Day, CVO_Date : Time := inttostr( DTSS.Day ) ;
CVO_Time : Time := '0:'+ LPad( inttostr( DTSS.Hour ), 2, '0' ) + ':' +
LPad( inttostr( DTSS.Minute ), 2, '0' ) + ':' +
LPad( inttostr( DTSS.Second ), 2, '0' ) + '.' +
copy( LPad( inttostr( DTSS.Billionths ), 9, '0' ), 1, 2 ) ;
CVO_DateTime : Time := inttostr( DTSS.Day ) + ':' +
LPad( inttostr( DTSS.Hour ), 2, '0' ) + ':' +
LPad( inttostr( DTSS.Minute ), 2, '0' ) + ':' +
LPad( inttostr( DTSS.Second ), 2, '0' ) + '.' +
copy( LPad( inttostr( DTSS.Billionths ), 9, '0' ), 1, 2 ) ;
end ;
end else
begin
Result := LIB_BADTOPT ;
end ;
end ; // LIB_CVTime
If the requested output format is delta, we generate a delta time, depending on
the requested output time. If the requested output format is any other value,
we return an error.
function Get_Absolute( Flags : integer ; var Er : cardinal ) : string ;
begin
Len := 0 ;
setlength( Result, 64 ) ;
SRB.Buffer := int64( PChar( Result ) ) ;
SRB.Length := length( Result ) ;
LIB_SYS_ASCTIM( integer( @Len ), integer( @SRB ), Timestamp, Flags ) ;
setlength( Result, Len ) ;
end ;
The local Get_Absolute function converts a timestamp to an ASCII
string in the default system time format. We'll discuss LIB_SYS_ASCTIM in a
future article.
function LIB_Parse_Date_Time( Context : int64 ; S : string ;
var DTSS : TDTSS ) : integer ;
var ContextI : TDate_Time_Context ;
C, I, Loop, O : integer ;
St, En : integer ;// Starting and ending positions in input string
SL : TStringList ;
N, T, TN : string ;
Y, Mo, D, H, M, Sec : word ;
NS : longint ;
TS : int64 ;
begin
// Setup...
Result := 0 ; // Assume success
S := trim( lowercase( S ) ) ;
fillchar( DTSS, sizeof( DTSS ), 0 ) ;
DTSS.Flags := 255 ; // Starting out, everything must be defaulted
LIB_Parse_Date_Time takes a date/time in string format, a DTSS structure,
and an optional date/time format instance. We will discuss these instances below.
We start out by initializing the DTSS structure - all zeros except for the Flags
which have the DTF_* constants necessary to indicate which parts of the date/time
are defaulted (we assume they are all defaulted unless we find a given part in the
provided string).
if( Context = 0 ) then
begin
ContextI := TDate_Time_Context.Create ;
end else
begin
ContextI := TDate_Time_Context( pointer( Context ) ) ;
end ;
If a context is 0, we create a date/time context, otherwise we cast the passed integer as
an existing date/time context instance.
// Handle quotes...
if( copy( S, 1, 1 ) = '"' ) then
begin
DTSS.Quoted := True ;
S := copy( S, 2, length( S ) ) ; // Trim leading quote
I := pos( '"', S ) ;
if( I > 0 ) then
begin
DTSS.Last_Valid_Position := I ;
setlength( S, I - 1 ) ;
end else
begin
DTSS.Last_Valid_Position := length( S ) ;
end ;
end ;
As described a couple of articles ago, date/time specifications can be enclosed
in quotes. So, we check for a date/time string that starts with a quote. If
found, we remove it and set the Quoted flag in DTSS. We then look for a closing
quote. If one is found, we trim the remainder of the string. In essence, if the
date/time is enclosed in quotes, we ignore anything after the quoted portion of
the string. However, there cannot be anything else preceeding the initial quote - if
the string doesn't start with a quote, it will not be treated as a quoted date/time.
// Process string...
St := 1 ;
En := 0 ;
SL := ContextI.Parsed_List( LIB_K_INPUT_FORMAT ) ;
for I := 0 to SL.Count - 1 do
begin
First we get a parsed list of the input format from the context, and then we loop
through the items. We will discuss what this parsed list is later, but for now
understand that it is a list of items, each one of which is either a delimiter
or a date/time code (starting with an exclamation point).
if( St > length( S ) ) then
begin
break ; // Hit end of input string
end ;
if( S[ St ] = '+' ) then // Hit a delta time specification
begin
En := St - 1 ;
DTSS.Last_Valid_Position := En ;
break ;
end ;
T := SL[ I ] ;
if( I < SL.Count - 1 ) then
begin
TN := SL[ I + 1 ] ;
end else
begin
TN := '' ;
end ;
if( copy( T, 1, 1 ) <> '!' ) then // A delimiter
begin
if( copy( S, St, length( T ) ) <> T ) then
begin
if( ( copy( S, St, 1 ) <> ' ' ) or ( T <> ':' ) ) then // Space can be used in place of colon
begin
DTSS.Last_Valid_Position := En ;
break ;
end ;
end ;
St := St + length( T ) ;
En := St ;
end else
Each time through the loop, we check to make sure we haven't reached the end of
the input string. We can reach the end before we've processed all input fields
in the parsed list. In that case, it means that the unspecified items should be
defaulted, so we exit the loop.
If we encounter a plus sign, we have encountered a delta time specification (either
stand-alone or as part of a combination date/time). We Update the ending position
to the current position and set the Last_Valid_Position field, then exit the loop.
Now we get the next item in the parsed list, and the following item (if we're at
the end of the list, we assume the next item is null). If the item doesn't begin
with an exclamation (!) then the item is a delimiter (such as a dash or colon).
In the case of a delimiter, if the delimiter doesn't match what's at the current
point of the input string, we mark the last valid position and exit the loop. Otherwise
we update the St and En values and loop back for the next item.
We also allow a space to be used in place of a colon delimiter.
if( ( TN = '' ) or ( copy( S, 1, length( TN ) ) <> TN ) or ( copy( TN, 1, 1 ) = '!' ) ) then
begin// Haven't hit next delimiter
// Process item...
if( copy( T, 1, 3 ) = '!MI' ) then // Meridium indicator
begin
O := ContextI.Index( LIB_K_MERIDIEM_INDICATOR_L, S, St, En ) ;
if( O = 0 ) then // Not valid
begin
break ;
end ;
DTSS.Flags := DTSS.Flags and ( not DTF_Defaulted_Meridium ) ;
DTSS.Meridium := O ;
end else
If there is another parsed item following the curent one and the current position
in the input string matches it, and the next item is a code, then what we have
is a situation where the input string has omitted an item. In other words, the
current position is the next delimiter. In such a case we drop down to the end
of the loop and move on to the next item (the delimiter).
But if the foregoing is not the case, we process the current code appropriately.
We start with a meridium indicator (any of them starting with "!MI"). Note that
there are several meridium indicator codes, but we match on any of them, because
we do not require that the input string match the exact case. If the code is a
meridium indicator, we find the index in the meridium list for the date/time
format. If the index is 0, the supplied data doesn't match a valid meridium
indicator and we exit the loop because we've found a place that doesn't match
the input specification for date/time. Otherwise, we clear the flag indicating
that the meridium is not defaulted and set the DTSS.Meridium value
to the index. This is the basic operation of all of the following code handling
situations.
if( copy( T, 1, 3 ) = '!MA' ) then // Month alphabetic
begin
if( DTSS.Relative <> 0 ) then // Already have a relative date specified
begin
Skip_Date_Delimiter( S, St, En ) ;
St := En ;
continue ;
end ;
O := ContextI.Index( LIB_K_RELATIVE_DAY_NAME_L, S, St, En ) ;
if( O > 0 ) then
begin
Skip_Date_Delimiter( S, St, En ) ;
DTSS.Relative := O ;
St := En ;
continue ;
end ;
O := ContextI.Index( LIB_K_MONTH_NAME_L, S, St, En ) ;
if( O = 0 ) then
begin
O := ContextI.Index( LIB_K_MONTH_NAME_ABB_L, S, St, En ) ;
if( O = 0 ) then
begin
break ;
end ;
end ;
DTSS.Month := O ;
DTSS.Flags := DTSS.Flags and ( not DTF_Defaulted_Month ) ;
end else
The alphabetic month code is handled much the same way as the meridium indicator
code, but there is additional processing for date codes. It is possible that
some previous loop processed a relative day specification (e.g. "yesterday" or
"tomorrow"). If that has been done, then the Relative value will have been set
in DTSS. In that case, we use Skip_Date_Delimiter to skip past
this item, and continue with the next iteration of the loop. Otherwise, we
check to see if the current input string position is a relative day. We do
this by finding the index in the relative day name list. If found, the Relative
value is set for future date code processing, the delimiter is skipped, and the
current position is updated, then we continue with the next loop iteration. But
if we aren't dealing with a relative day, we look up the month name index. We
check both the full name and the abbreviated name for a match. As before, if
there is no match, we exit the loop. Otherwise we set the flags and Month field
in DTSS.
if( copy( T, 1, 3 ) = '!MN' ) then // Month numeric
begin
if( DTSS.Relative <> 0 ) then // Already have a relative date specified
begin
Skip_Date_Delimiter( S, St, En ) ;
St := En ;
continue ;
end ;
O := ContextI.Index( LIB_K_RELATIVE_DAY_NAME_L, S, St, En ) ;
if( O > 0 ) then
begin
Skip_Date_Delimiter( S, St, En ) ;
DTSS.Relative := O ;
St := En ;
continue ;
end ;
N := Parse_Number( S, St, En ) ;
if( N = '' ) then
begin
break ;
end ;
O := strtoint( N ) ;
if( ( O < 1 ) or ( O > 12 ) ) then
begin
En := St ;
break ;
end ;
DTSS.Month := O ;
DTSS.Flags := DTSS.Flags and ( not DTF_Defaulted_Month ) ;
end else
The processing for the numeric month is nearly identical to the month name
processing. Except, instead of looking up the month name, we use Parse_Number
to validate and obtain the current number. We validate the month number is
between 1 and 12, inclusive. No matter what localization we are dealing with,
all cases use a 12-month year.
if( copy( T, 1, 2 ) = '!W' ) then // Weekday
begin
if( DTSS.Relative <> 0 ) then // Already have a relative date specified
begin
Skip_Date_Delimiter( S, St, En ) ;
St := En ;
continue ;
end ;
O := ContextI.Index( LIB_K_RELATIVE_DAY_NAME_L, S, St, En ) ;
if( O > 0 ) then
begin
Skip_Date_Delimiter( S, St, En ) ;
DTSS.Relative := O ;
St := En ;
continue ;
end ;
O := ContextI.Index( LIB_K_WEEKDAY_NAME_L, S, St, En ) ;
if( O = 0 ) then
begin
O := ContextI.Index( LIB_K_WEEKDAY_NAME_ABB_L, S, St, En ) ;
if( O = 0 ) then
begin
break ;
end ;
end ;
DTSS.Weekday := O ;
end else
Weekdays are handled much the same as month names. However, I should point out
that input formats containing weekday codes are logically questionable. If a day
is specified, a weekday is redundant, at best. If a day isn't specified, a weekday
is ambiguous. And what do you do if
the user enters a weekday that differs from what the specified day of the month actually
is? Weekday codes are primarily used in date output formatting and should be avoided in
input format specifications. Nevertheless, we will process one if it is included,
and verify that the value matches a valid weekday name - but we don't check
consistency with actual dates.
if( copy( T, 1, 2 ) = '!D' ) then // Day
begin
if( DTSS.Relative <> 0 ) then // Already have a relative date specified
begin
Skip_Date_Delimiter( S, St, En ) ;
St := En ;
continue ;
end ;
O := ContextI.Index( LIB_K_RELATIVE_DAY_NAME_L, S, St, En ) ;
if( O > 0 ) then
begin
Skip_Date_Delimiter( S, St, En ) ;
DTSS.Relative := O ;
St := En ;
continue ;
end ;
N := Parse_Number( S, St, En ) ;
if( N = '' ) then
begin
break ;
end ;
O := strtoint( N ) ;
if( ( O < 1 ) or ( O > 31 ) ) then
begin
En := St ;
break ;
end ;
DTSS.Flags := DTSS.Flags and ( not DTF_Defaulted_Day ) ;
DTSS.Day := O ;
end else
if( copy( T, 1, 2 ) = '!H' ) then // Hour
begin
N := Parse_Number( S, St, En ) ;
if( N = '' ) then
begin
break ;
end ;
O := strtoint( N ) ;
if( ( O < 0 ) or ( O > 23 ) ) then
begin
En := St ;
break ;
end ;
DTSS.Hour := O ;
DTSS.Flags := DTSS.Flags and ( not DTF_Defaulted_Hour ) ;
end else
if( copy( T, 1, 2 ) = '!S' ) then // Second
begin
N := Parse_Number( S, St, En ) ;
if( N = '' ) then
begin
break ;
end ;
O := strtoint( N ) ;
if( ( O < 0 ) or ( O > 59 ) ) then
begin
En := St ;
break ;
end ;
DTSS.Second := O ;
DTSS.Flags := DTSS.Flags and ( not DTF_Defaulted_Second ) ;
end else
if( copy( T, 1, 2 ) = '!M' ) then // Minute
begin
N := Parse_Number( S, St, En ) ;
if( N = '' ) then
begin
break ;
end ;
O := strtoint( N ) ;
if( ( O < 0 ) or ( O > 59 ) ) then
begin
En := St ;
break ;
end ;
DTSS.Minute := O ;
DTSS.Flags := DTSS.Flags and ( not DTF_Defaulted_Minute ) ;
end else
if( ( copy( T, 1, 2 ) = '!Y' ) or ( copy( T, 1, 2 ) = '!Z' ) ) then // Year
begin
if( DTSS.Relative <> 0 ) then // Already have a relative date specified
begin
Skip_Date_Delimiter( S, St, En ) ;
St := En ;
continue ;
end ;
O := ContextI.Index( LIB_K_RELATIVE_DAY_NAME_L, S, St, En ) ;
if( O > 0 ) then
begin
Skip_Date_Delimiter( S, St, En ) ;
DTSS.Relative := O ;
St := En ;
continue ;
end ;
N := Parse_Number( S, St, En ) ;
if( N = '' ) then
begin
break ;
end ;
O := strtoint( N ) ;
DTSS.Year := O ;
DTSS.Flags := DTSS.Flags and ( not DTF_Defaulted_Year ) ;
end else
Most of the remaining codes are handled like the first two we discussed so we
won't go into more detail about them here.
if( copy( T, 1, 2 ) = '!C' ) then // Fractional seconds
begin
N := Parse_Number( S, St, En ) ;
if( N = '' ) then
begin
break ;
end ;
C := 0 ;
for Loop := 1 to length( N ) do
begin
if( N[ Loop ] = '0' ) then // Leading zero
begin
inc( C ) ;
end else
begin
break ;
end ;
end ;
O := strtoint( N ) ;
for Loop := length( N ) to 9 do
begin
O := O * 10 ;
end ;
while( C > 0 ) do
begin
dec( C ) ;
O := O div 10 ;
end ;
DTSS.Billionths := O ;
DTSS.Flags := DTSS.Flags and ( not DTF_Defaulted_Tenths ) ;
end else
begin
DTSS.Flags := DTSS.Flags or DTF_Error ; // Invalid item
break ;
end ;
St := En + 1 ;
end ;
end ; // for I := 0 to Parsed_Input.Count - 1
The final code we handle is for fractional seconds. First we get the
specified number with Parse_Number . Then we count up the number of
leading zeros in the number. Then we convert to billionths, which
is what UOS time counts in. Note that the input could have any number of fractional
digits, so we multiple the value by 10 a number of times equal to the
difference between 9 digits (1 billionth) and the actual number of digits
specified. Then we divide by 10 for the number of leading zeros. Then we set
the flags and Billionths field.
If the code is not recognized, we set an error and exit the loop. Otherwise, we
adjust the input string position and loop back for the next item.
// Default the unspecified date parts...
Parse_Sirius_Timestamp( LIB_Get_Timestamp, Y, Mo, D, H, M, Sec, NS ) ;
if( DTSS.Relative <> 0 ) then
begin
case DTSS.Relative of
1 : // Yesterday
begin
TS := Encode_Sirius_Timestamp( Y, Mo, D - 1, H, M, Sec, NS ) ;
Parse_Sirius_Timestamp( TS, Y, Mo, D, H, M, Sec, NS ) ;
end ;
3 : // Tomorrow
begin
D := D + 1 ;
Parse_Sirius_Timestamp( TS, Y, Mo, D, H, M, Sec, NS ) ;
end ;
end ;
DTSS.Year := Y ;
DTSS.Month := Mo ;
DTSS.Day := D ;
end else
begin
if( ( DTSS.Flags and DTF_Defaulted_Day ) <> 0 ) then
begin
DTSS.Day := D ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Year ) <> 0 ) then
begin
DTSS.Year := Y ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Month ) <> 0 ) then
begin
DTSS.Month := Mo ;
end ;
end ;
Once we've processed through the input date/time string, we default the omitted
parts. First, we parse the current time into the local variables for dates and
times. If a relative day was specified, we get a timestamp for the previous or
next day, as appropriate. Note that we use the current date/time values other
than the day. Then we parse that timestamp and update the year, month, and day from
the new timestamp values. We don't update the time in DTSS since that isn't
affected by relative days. We do update the year and month though, since the
previous or next day may be in a different month and/or year.
If there was no relative day specified, we update DTSS with the current day, year, and
month, if any of those parts were omitted.
// Default the unspecified time parts...
if( ( DTSS.Flags and DTF_Defaulted_Hour ) <> 0 ) then
begin
DTSS.Hour := H ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Minute ) <> 0 ) then
begin
DTSS.Minute := M ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Second ) <> 0 ) then
begin
DTSS.Second := Sec ;
end ;
if( ( DTSS.Flags and DTF_Defaulted_Tenths ) <> 0 ) then
begin
DTSS.Billionths := NS ;
end ;
Next we default the various time fields in DTSS that were omitted, with the current
time.
// Check for delta time...
St := En + 1 ;
if( ( copy( S, St, 1 ) = '+' ) or ( copy( S, St, 1) = '-' ) ) then
begin
if( S[ St ] = '+' ) then
begin
inc( St ) ;
inc( En ) ;
end ;
if( copy( S, St, 1 ) = '-' ) then
begin
DTSS.Flags := DTSS.Flags or DTF_Negative ;
inc( St ) ;
inc( En ) ;
end ;
Now we are ready to handle delta time specifications. If the next character of
the input time is a plus or minus, we have a delta time. In that case, if the
character is a plus, we skip over it. Then we check for a minus and skip over
it if found. This handles both the "+" and "+-" constructs.
DTSS.Delta_Days := Parse_integer ;
St := En ;
if( copy( S, En + 1, 1 ) = ':' ) then // Delta time is included
begin
St := En + 2 ;
DTSS.Delta_Hours := Parse_Integer ;
St := En ;
if( copy( S, En + 1, 1 ) = ':' ) then // Delta minutes is included
begin
St := En + 2 ;
DTSS.Delta_Minutes := Parse_Integer ;
St := En ;
if( copy( S, En + 1, 1 ) = ':' ) then // Delta seconds is included
begin
St := En + 2 ;
DTSS.Delta_Seconds := Parse_Integer ;
end ;
St := En ;
We get the day portion of the delta. If a colon follows, we skip over it and get the
delta hours value. We repeat this process with the minutes and seconds.
if( copy( S, En + 1, 1 ) = '.' ) then // Delta billionths is included
begin
C := 0 ;
for Loop := St to En do
begin
if( S[ Loop ] = '0' ) then // Leading zero
begin
inc( C ) ;
end else
begin
break ;
end ;
end ;
DTSS.Delta_Billionths := Parse_Integer ;
for Loop := En - St to 8 do
begin
DTSS.Delta_Billionths := DTSS.Delta_Billionths * 10 ;
end ;
while( C > 0 ) do
begin
DTSS.Delta_Billionths := DTSS.Delta_Billionths div 10 ;
end ;
St := En ;
end ; // if( copy( S, En + 1, 1 ) = '.' )
end ; // if( copy( S, En + 1, 1 ) = ':' )
end ; // if( copy( S, En + 1, 1 ) = ':' )
end ; // Delta time
If a decimal point is encountered, we know that we have a fractional second. As
above, we need to convert this to billionths. So we count the number of leading
zeroes. Then we get the numeric value, repeatedly multiply by 10 to convert to 9 digits,
then divide by 10 according the number of leading zeroes. By the way, we always
multiple first, then divide second. Since the division is integer, we would potentially
lose significant digits if we divided first and multiplied second.
DTSS.Last_Valid_Position := En ;
// Cleanup...
if( Context = 0 ) then
begin
ContextI.Free ;
end ;
end ; // LIB_Parse_Date_Time
Finally, we update the last valid position in DTSS with the last processed position
in the input string. This allows the calling code to know where/if the input
date/time was invalid. If the last valid position is also the last character of
the input then the whole thing was valid. Lastly, if we created a date/time
context instance, we free it.
function Parse_Number( const S : string ; St : integer ; var En : integer ) : string ;
begin
// Trim leading spaces...
while( St <= length( S ) ) do
begin
if( S[ St ] <> ' ' ) then
begin
break ;
end ;
inc( St ) ;
end ;
En := St ;
// Parse number...
while( En <= length( S ) ) do
begin
if( pos( S[ En ], '0123456789' ) = 0 ) then
begin
break ;
end ;
inc( En ) ;
end ;
// Adjust end position...
if( ( En > length( S ) ) or ( pos( S[ En ], '0123456789' ) = 0 ) ) then
begin
dec( En ) ;
end ;
// Return value...
Result := copy( S, St, En - St + 1 ) ;
end ; // Parse_Number
The Parse_Number function is used to get an integer number from a string,
starting at position St. The function returns the numeric value (or 0 if none
found) and the ending position of the found number.
We skip past blanks, which are ignored. Then we process the number as long as
consecutive digits are found. Embedded spaces are not allowed - encountering a
space after the leading spaces (if any) ends the parsing. Finally, we update the
ending position and return the number.
In the next article, we will discuss the date/time context class that we used
in the above code.
Copyright © 2020 by Alan Conroy. This article may be copied
in whole or in part as long as this copyright is included.
|