1 Introduction
2 Ground Rules
Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class
The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up
The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup
Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API
Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O
UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation
UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services
UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN
CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND
Glossary/Index
Downloads
|
GETSYI
The GETSYI system service is used to obtain hardware and UOS information. Here is
the definition.
GETSYI returns information about the local system or about a node within a cluster.
Format
SYS_GETSYI( efn, csiadr, name, itemlist, iosb, astadr, astprm )
Return Value
Either an integer or a string, depending upon the item requested. The table below
indicates the valid items and the corresponding return values.
Arguments
efn
Event flag to set upon completion.
csiadr
The address of memory containing the Cluster ID of the node for which to return information.
If 0, or if the memory contains 0, the name parameter is used to determine the node.
name
Address of TSRB for the name of the node for which to return information. If 0, or
if the string is null, the current node is assumed. Note that a non-zero Cluster ID
will override this.
itemlist
Address of a descriptor list containing the code(s) indicating what information to
return. This memory contains one or more item descriptors, terminating with a null
item descriptor. The valid codes are listed in the table below.
name
Address of TSRB for the name of the node for which to return information. If 0, or
if the string is null, the current node is assumed. Note that a non-zero Cluster ID
will override this.
iosb
Address of an IO Status Block to receive completion status.
astadr
Address of an AST routine to call upon completion. If 0 is passed, no AST is called.
astprm
Parameter to pass to the AST routine specified with the astadr parameter.
Description
The Get System Information service returns information about the local system or
about other nodes in a cluster. Except where otherwise noted, each item returns
a 64-bit integer value.
The following are the valid item codes:
Item | Information returned. |
SYI_ACTIVE_CPU_BITMAP | A bitmask with each bit indicating a member of the CPUs
partipating in UOS scheduling activities. If a given bit is set, that CPU is in the active set.
The size of the result is determined by the number of CPUs supported by the system. To
determine the number of bytes required, use SYI_MAX_CPUS, round that return value up to a multiple of 64,
and divide that by 8. |
SYI_ACTIVE_CPU_MASK | Equivalent to SYI_ACTIVE_CPU_BITMAP but only returns
the first 64 CPUs (8 bytes). |
SYI_ACTIVECPU_CNT | The count of active CPUs. |
SYI_ARCHFLAG | Architecture flags for the system. |
SYI_ARCH_NAME | Name of the CPU architecture, as a character string. |
SYI_ARCH_TYPE | Type of the CPU architecture. |
SYI_AVAIL_CPU_BITMAP | A bitmask indexed by CPU
number. If a given bit is set, that CPU is in the active set and participating in
scheduling activities. The size of the result is determined by the number of CPUs supported by the system. To
determine the number of bytes required, use SYI_MAX_CPUS, round that return value up to a multiple of 64,
and divide that by 8. |
SYI_AVAIL_CPU_MASK | The same as SYI_AVAIL_CPU_BITMAP except that only
64 CPUs are supported (a single 64-bit integer result). |
SYI_AVAILCPU_CNT | The count of CPUs available to the system. |
SYI_BOOT_DEVICE | Name of the device that UOS was booted from, as a character string. |
SYI_BOOTTIME | Timestamp of when UOS was booted. |
SYI_CHARACTER_EMULATED | 1 if this is a VAX with character instruction set emulation, 0 otherwise. |
SYI_CLUSTER_EVOTES | Total number of votes in the cluster. |
SYI_CLUSTER_FSYSID | System ID for the first node to boot in the cluster (the
founding node). |
SYI_CLUSTER_FTIME | Timestamp of when the first node in the cluster was booted. |
SYI_CLUSTER_MEMBER | 1 if the node is the member of a cluster, 0 otherwise. |
SYI_CLUSTER_NODES | Total number of nodes in the cluster. |
SYI_CLUSTER_QUORUM | Total quorum for the cluster. |
SYI_CLUSTER_VOTES | Total number of votes in the cluster. This is the
value of the system parameter VOTES. |
SYI_COMMUNITY_ID | AlphaServer system hardware community ID. |
SYI_CONSOLE_VERSION | Console firmware version. |
SYI_CONTIG_GBLPAGES | Total number of free, contiguous global pages. |
SYI_CPU | Processor type. See PR_SID_* constants. For extended information
about processor types, see the SYI_XCPU item. |
SYI_CPU_AUTOSTART | A list of CPUs that will brought into the active set if it
transitions into the current instance from outside or is powered up while owned. A bitmask
indexed by CPU. Any set bit indicates the CPU will be brought into the active set. |
SYI_CPU_FAILOVER | Destinations for crashed Alpha CPUs. A set of 64-bit integer
pairs for each CPU in the current instance. To determine the amount of room for the
result buffer, in bytes, use the number of CPUs from SYI_AVAILCPU_CNT, and multiply by 16. |
SYI_CPUCAP_MASK | An array of 64-bit integers, indexed
by CPU. Each value is a bitmask indicating CPU capabilities.
To determine the amount of room for the
result buffer, in bytes, use the number of CPUs from SYI_AVAILCPU_CNT, and multiply by 8. |
SYI_CPUTYPE | The processor type. See the CPU_* constants. |
SYI_CWLOGICALS | 1 if the clusterwide logical name database
has been initialized on the system, 0 otherwise. |
SYI_DAY_OVERRIDE | Returns 1 if SET DAY has been used to override the default
primary and secondary day types in the UAF that are used to control user logins. 0
if the the UAF file records are honored for each user. |
SYI_DAY_SECONDARY | Returns 1 if SET DAY has been used to specify that
the current day is to be considered a Secondary day for login purposes. 0 if the
current day is considered a Primary day for login purposes. If the SYI_DAY_OVERRIDE
item returns 0, the number returned by this item is meaningless. |
SYI_DECIMAL_EMULATED | Returns 1 if this is a VAX CPU with decimal instruction
set emulation, 0 otherwise. |
SYI_DECNET_FULLNAME | Node name as a character string. |
SYI_DECNET_VERSION | Network version. |
SYI_D_FLOAT_EMULATED | Returns 1 if this is a VAX with D Float instruction emulation, 0 otherwise. |
SYI_DEF_PRIO_MAX | Maximum priority for the default scheduling policy. |
SYI_DEF_PRIO_MIN | Minimum priority for the default scheduling policy. |
SYI_ERLBUFFERPAG_S2 | Number of system pages used for each S2 errorlog buffer. |
SYI_ERRORLOGBUF_S2 | Number of S2 errorlog buffers. |
SYI_ERLBUFFERPAGES | Number of system pages used for each S0 errorlog buffer. |
SYI_ERRORLOGBUFFERS | Number of S0 errorlog buffers. |
SYI_F_FLOAT_EMULATED | Returns 1 if this is a VAX with F Float instruction emulation, 0 otherwise. |
SYI_FREE_GBLPAGES | Current count of free global pages. The system parameter GBLPAGES sets the maximum global pages. |
SYI_FREE_GBLSECTS | Current count of free global section table entries. The system parameter GBLSECTIONS sets the maximum global section entries. |
SYI_FREE_PAGES | Total number of free pages. |
SYI_G_FLOAT_EMULATED | Returns 1 if this is a VAX with G Float instruction emulation, 0 otherwise. |
SYI_GALAXY_ID | 128-bit Galaxy ID for AlphaServer GS systems (16 bytes). |
SYI_GALAXY_MEMBER | 1 if member of a Galaxy ID for AlphaServer GS systems, 0 if not. |
SYI_GALAXY_PLATFORM | 1 if running on a Galaxy platform for AlphaServer GS systems, 0 if not. |
SYI_GALAXY_SHMEMSIZE | Number of shared memory pages for AlphaServer GS systems. |
SYI_GH_RSRVPGCNT | Number of pages covered by granularity hints for AlphaServer GS systems. |
SYI_GLX_FORMATION | Timestamp of when galaxy configuration was created. |
SYI_GLX_MAX_MEMBERS | Maximum count of instances that may join the galaxy
configuration for AlphaServer GS systems. |
SYI_GLX_MBR_MEMBER | A 64-byte integer. Each 8 bytes represents a galaxy instance from 7 to 9. Value is 1 if instance is a member. |
SYI_GLX_MBR_NAME | Returns a character string indicating the names which are known in the Galaxy membership. |
SYI_GLX_TERMINATION | The timestamp of when the galaxy configuration was terminated for AlphaServer GS systems. |
SYI_H_FLOAT_EMULATED | Returns 1 if this is a VAX with H Float instruction emulation, 0 otherwise. |
SYI_HP_ACTIVE_CPU_CNT | The count of CPUs in the hard partition that are not in firmware console mode. |
SYI_HP_ACTIVE_SP_CNT | The count of active UOS instances currently executing within the hard partition. |
SYI_HP_CONFIG_SBB_CNT | The count of existing system building blocks within the current hard partition. |
SYI_HP_CONFIG_SP_CNT | The maximum count of soft partitions within the current hard partition. |
SYI_HW_MODEL | System model type. See the VAX_K_* and ALPHA_K_* constants. |
SYI_HW_NAME | System model name as a character string. |
SYI_IO_PRCPU_BITMAP | A bitmask with each bit indicating a member of the CPUs
partipating in UOS scheduling activities. The bit that is set indicates the preferred CPU available for Fast Path operations.
The size of the result is determined by the number of CPUs supported by the system. To
determine the number of bytes required, use SYI_MAX_CPUS, round that return value up to a multiple of 64,
and divide that by 8. |
SYI_IO_PREFER_CPU | This is the same as the SYI_IO_PRCPU_BITMAP item except
that only the first 64 CPUs are returned (one 64-bit integer). |
SYI_ITB_ENTRIES | On Alpha, number of I-stream translation buffer entries
that support granularity hints. |
SYI_MAX_CPUS | The maximum number of CPUs that can be recognized by the system. |
SYI_MAX_PFN | The highest numbered PFN in use by UOS. This may be influenced
by the PHYSICAL_MEMORY system parameter. |
SYI_MEMSIZE | Number of pages of memory available to UOS. |
SYI_MODIFIED_PAGES | Number of modified pages. |
SYI_MULTITHREAD | Value of the MULTITHREAD system parameter. |
SYI_NODE_AREA | Network area for the node. |
SYI_NODE_CSID | Cluster ID of the node in the form of a string containing a hexadecimal value. |
SYI_NODE_EVOTES | Number of votes alloted to the node. |
SYI_NODE_HWVERS | Hardware version of the specified node. |
SYI_NODE_NUMBER | Network number for the specified node. |
SYI_NODE_QUORUM | Node's quorum. This is derived from the node's sytem
parameter EXPECTED_VOTES. |
SYI_NODE_SWINCARN | Software incarnation number for the node in the form
of a string containing a hexadecimal value. |
SYI_NODE_SWTYPE | Type of UOS software for the node. This is a 4-byte ASCII string. |
SYI_NODE_SWVERS | Software version of the specified node. This is a 4-byte ASCII string. |
SYI_NODE_SYSTEMID | System ID. |
SYI_NODE_VOTES | Number of votes alloted to the node. This is determined by the
node's system parameter VOTES. |
SYI_NODENAME | Node name (not including double colon). Returned as a character string. |
SYI_NPAGED_FREE | Number of free bytes in the non-paged pool. |
SYI_NPAGED_LARGEST | Size of largest contiguous area of free memory in the non-paged pool. |
SYI_NPAGED_TOTAL | Total size (in bytes) of non-paged pool. |
SYI_NPAGED_INUSE | Total number of bytes currently used in the non-paged pool. |
SYI_PAGED_FREE | Number of free bytes in the paged pool. |
SYI_PAGED_INUSE | Total number of bytes currently used in the paged pool. |
SYI_PAGED_LARGEST | Size of largest contiguous area of free memory in the paged pool. |
SYI_PAGED_TOTAL | Total size (in bytes) of non-paged pool. |
SYI_PAGE_SIZE | Number of bytes in a physical page of memory. |
SYI_PAGEFILE_FREE | Number of free pages in the currently installed paging files. |
SYI_PAGEFILE_PAGE | Total number of pages in the currently installed paging files. |
SYI_PALCODE_VERSION | Version of PALCODE on an Alpha system. |
SYI_PARTITION_ID | Soft partition ID for AlphaServer systems that support partitioning. |
SYI_PFN_MEMORY_MAP | Same as SYI_PFN_MEMORY_MAP64. |
SYI_PFN_MEMORY_MAP64 | Returns a structure defining the system's memory layout. |
SYI_PHYSICALPAGES | Total number of PFNs. |
SYI_PMD_COUNT | Total number of physical memory descriptors. |
SYI_POTENTIAL_CPU_BITMAP | A bitmask indexed by CPU
number. If a given bit is set, that CPU is in the potential set. The size of the result is determined by the number of CPUs supported by the system. To
determine the number of bytes required, use SYI_MAX_CPUS, round that return value up to a multiple of 64,
and divide that by 8. |
SYI_POTENTIAL_CPU_MASK | The same as SYI_POTENTIAL_CPU_BITMAP, but only returns the first 64
CPUS (one 64-bit integer). |
SYI_POTENTIALCPU_CNT | The count of the CPUs in the hard partition that are in the potential set. |
SYI_POWERED_CPU_BITMAP | A number representing a bitmask indexed by CPU
number. If a given bit is set, that CPU is powered up. The size of the result is determined by the number of CPUs supported by the system. To
determine the number of bytes required, use SYI_MAX_CPUS, round that return value up to a multiple of 64,
and divide that by 8. |
SYI_POWERED_CPU_MASK | The same as SYI_POWERED_CPU_BITMAP, but only for the
first 64 CPUs (a 64-bit integer). |
SYI_POWEREDCPU_CNT | The count of CPUs in the hard partition that are physically powered up. |
SYI_PRESENT_CPU_BITMAP | A number representing a bitmask indexed by CPU
number. If a given bit is set, that CPU is in the present set. The size of the result is determined by the number of CPUs supported by the system. To
determine the number of bytes required, use SYI_MAX_CPUS, round that return value up to a multiple of 64,
and divide that by 8. |
SYI_PRESENT_CPU_MASK | The same as SYI_PRESENT_CPU_BITMAP, but only for
the first 64 CPUs (a 64-bit integer). |
SYI_PRESENTCPU_CNT | The count of CPUs in the hard partition that physically reside in a hardware slot. |
SYI_PRIMARY_CPUID | The ID of the primary processor for the node. |
SYI_PROCESS_SPACE_LIMIT | 64-bit virtual address after the last byte of process private address space. |
SYI_PSXFIFO_PRIO_MAX | Maximum priority for the POSIX FIFO scheduling policy. |
SYI_PSXFIFO_PRIO_MIN | Mimimum priority for the POSIX FIFO scheduling policy. |
SYI_PSXRR_PRIO_MAX | Maximum priority for the POSIX round-robin scheduling policy. |
SYI_PSXRR_PRIO_MIN | Mimimum priority for the POSIX round-robin scheduling policy. |
SYI_PT_BASE | The virtual address of the base of the page tables. |
SYI_PTES_PER_PAGE | Maximum number of CPU-specific pages that can be mapped by one page table page. |
SYI_QUANTUM | Maximum amount of processor time a process can receive while
other processes are waiting. |
SYI_RAD_CPUS | Returns an array of 64-bit integer RAD/CPU pairs, on AlphaServer GS systems. Terminated with a -1,-1 pair. |
SYI_RAD_MAX_RAD | The maximum number of RADs possible on this platform on AlphaServer GS systems. If there is
no RAD support, 1 is returned. |
SYI_RAD_MEMSIZE | Returns an array of RAD/PAGES pairs, on AlphaServer GS systems. Terminated with a -1,-1 pair. |
SYI_RAD_SHMEMSIZE | Returns an array of RAD/PAGES pairs, on AlphaServer GS systems. Terminated with a -1,-1 pair. |
SYI_REAL_CPUTYPE | Actual CPU type of the primary CPU on the node. |
SYI_SCSNODE | Galaxy instance name on AlphaServer GS systems that support partitioning, returned
as a character string. |
SYI_SCS_EXISTS | Returns 1 to indicate if the system communication subsystem
(SCS) is currently loaded on the node, 0 otherwise.. |
SYI_SID | System ID. |
SYI_SWAPFILE_FREE | Number of free pages in currently installed swap files. |
SYI_SWAPFILE_PAGE | Number of pages in the currently installed swap files. |
SYI_SYSTEM_RIGHTS | Returns the system rights list as an array of 64-bit
integer identifiers. |
SYI_SYSTEM_UUID | The 128-bit Universal Unique Identifier for the node (16 bytes). |
SYI_SYSTYPE | The family or system hardware platform. |
SYI_TOTAL_PAGES | Total number of physical memory pages. |
SYI_USED_GBLPAGCNT | Number of pages currently in use in the global page table. |
SYI_USED_GBLPAGMAX | Maximum number of pages ever in use in the global page table. |
SYI_USED_PAGES | Total number of used pages. |
SYI_VERSION | UOS version, returned as a character string. |
SYI_VECTOR_EMULATOR | Returns 1 if the vector instruction emulator facility (VVIEF) is installed on the node, 0 otherwise. |
SYI_VP_MASK | Bitmask indicating which processors have vector coprocessors. |
SYI_VP_NUMBER | Number of vector processors in the system. |
SYI_XCPU | Extended CPU processor type. |
SYI_XSID | Extended system type information. |
procedure GETSYIW( efn, CSIAdr : int64 ; Name : string ; Itmlst, IOSB, astadr, astprm : int64 ) ;
var P : string ;
SRB : TSRB ;
begin
P := Name ;
Set_String( P, SRB ) ;
SYS_GETSYIW( efn, CSIadr, int64( pointer( @SRB ) ), ItmLst, IOSB, Astadr, AstPrm ) ;
end ;
This is the Pascal interface for the GETSYI system service. It constructs a TSRB
structure for the passed string and calls the service.
procedure SYS_GETSYIW( efn, CSIAdr, Name, Itmlst, IOSB, astadr, astprm : int64 ) ;
var Status : int64 ;
SysRequest : TItem_Request ;
SRB : PSRB ;
begin
Status := 0 ;
SRB := PSRB( pointer( Name ) ) ;
fillchar( SysRequest, sizeof( SysRequest ), 0 ) ;
SysRequest.Request.Subsystem := UOS_Subsystem_Kernel ;
SysRequest.Request.Request := UOS_Kernel_GetSYIW ;
SysRequest.Request.Length := sizeof( SysRequest ) - sizeof( Sysrequest.Request ) ;
SysRequest.Request.Status := integer( @Status ) ;
SysRequest.IRB.Item := CSIAdr ;
SysRequest.IRB.Buffer := ItmLst ;
SysRequest.SRB.Buffer := SRB.Buffer ;
SysRequest.SRB.Length := SRB.Length ;
SysRequest.Integer1 := IOSB ;
Call_To_Ring0( integer( @SysRequest ) ) ;
end ;
SYS_GETSYIW works like most of the other system calls on the application
side (ring 3). We package up the information and make the call to the executive.
UOS_Kernel_GetSYIW:
begin
E := Enter_System_Call( Value, SReq, PID, MMC, sizeof( Item_Request ) - sizeof( SReq ),
Address ) ;
if( E <> nil ) then
begin
Set_Last_Error( E ) ;
exit ;
end ;
try
Item_Request := PItem_Request( Address ) ;
UString := Get_User_String( Kernel, PID, Item_Request.SRB, Status ) ;
Work := UString.Contents ;
UString.Free ;
Get_System_Info( PID, Work, Item_Request.IRB.Item, Item_Request.IRB.Buffer, IOSB ) ;
Write_User( Kernel, PID, Item_Request.Request.Status, sizeof( IOSB.r_io_64.w_status ),
IOSB.r_io_64.w_status ) ;
if( Item_Request.Integer1 <> 0 ) then
begin
Write_User( Kernel, PID, Item_Request.Integer1, sizeof( IOSB ), IOSB ) ;
end ;
finally
Exit_System_Call( Value, PID, MMC, sizeof( Item_Request ) - sizeof( SReq ) ) ;
end ;
exit ;
end ;
This code is addd to the Kernel's _API method. Nothing new here.
procedure TKernel.Get_System_Info( PID : TPID ; NodeName : string ; CID : integer ;
Itemlist : int64 ; var IOSB : TIOSB ) ;
var Buff : PChar ;
Descriptor : TSYS_Descriptor ;
Len : integer ;
Offset : int64 ;
function Write_Integer( I : int64 ) : boolean ;
begin
if( Len > sizeof( I ) ) then
begin
Len := sizeof( I ) ;
end ;
IOSB.r_io_64.w_status := Write_User( Kernel, PID, Descriptor.Buffer_Address, Len, I ) ;
Result := ( IOSB.r_io_64.w_status <> 0 ) ;
end ;
function Write_String( S : string ) : boolean ;
var SRB : TSRB ;
begin
if( Len < Length( S ) ) then
begin
setlength( S, Len ) ;
end ;
SRB.Buffer := Descriptor.Buffer_Address ;
SRB.Length := Len ;
IOSB.r_io_64.w_status := Set_User_String( Kernel, PID, SRB, S ) ;
Result := ( IOSB.r_io_64.w_status <> 0 ) ;
if( Result ) then
begin
if( MMC.Last_Error = nil ) then
begin
Generate_Exception( UOSErr_Memory_Address_Error ) ;
end ;
exit ;
end ;
if( Descriptor.Return_Length_Address <> 0 ) then
begin
IOSB.r_io_64.w_status := Write_User_int64( Kernel, PID, Descriptor.Return_Length_Address,
system.length( S ) ) ;
if( IOSB.r_io_64.w_status = UE_Error ) then
begin
if( MMC.Last_Error = nil ) then
begin
Generate_Exception( UOSErr_Memory_Address_Error ) ;
end ;
exit ;
end ;
end ;
end ;
var I : integer ;
I64 : int64 ;
S : string ;
begin
if( CID <> 0 ) then
begin
NodeName := '' ;
if( CID = -1 ) then // Wildcard
begin
CID := USC.Last_CID_Wildcard( PID ) ;
if( CID = -1 ) then // First time
begin
//TODO
end ;
end ;
//TODO
end ;
if( NodeName <> '' ) then
begin
if( NodeName <> Node_Name ) then
begin
Generate_Exception( SS_NOSUCHNODE ) ;
exit ;
end ;
//TODO
end ;
This new method contains the local functions Write_Integer and Write_String
match what we've seen before, such as in the GETJPI system service. We do some minor
processing of a passed node name. However, we have not covered clusters, so we leave
it mostly unimplemented at present. Of note is that if a node name is provided and
it is not this node's name, we return an error. Since there is of yet no cluster support,
the only node name that is valid has to be the current node.
// Process the item list...
while( true ) do
begin
// Map item and process descriptor...
Offset := MMC.Lock_Pages( PID, itemlist, sizeof( Descriptor ) ) ;
try
Buff := PAnsiChar( MMC.Map_Pages( PID, 0, itemlist, sizeof( Descriptor ),
MAM_Read or MAM_Lock ) ) ;
if( Buff = nil ) then
begin
if( MMC.Last_Error = nil ) then
begin
Generate_Exception( UOSErr_Memory_Address_Error ) ;
end ;
exit ;
end ;
try
move( Buff[ Offset ], Descriptor, sizeof( Descriptor ) ) ;
if(
( Descriptor.Buffer_Length = 0 )
or
( Descriptor.Buffer_Address = 0 )
or
( Descriptor.Return_Length_Address = 0 )
) then // End of list
begin
exit ;
end ;
Len := Descriptor.Buffer_Length ;
if( Descriptor.Buffer_Address = 0 ) then
begin
IOSB.r_io_64.w_status := UE_Error ;
Generate_Exception( UOSErr_Memory_Address_Error ) ;
exit ;
end ;
case Descriptor.Item_Code of
As we've done with previous system calls that return information, we map the passed
descriptor memory and iterate through it until we find the end of the list. As with
GETJPI and GETDVI, there are some items that apply to features we have not yet covered.
In the case of GETSYI, this is even more pronounced. We will briefly cover those
items in groups of related features, which will be covered in the future. These are all marked with //TODO .
Note: Some of the items appear in one group but apply to more than one.
SYI_ACTIVE_CPU_BITMAP:
begin
if( Write_Integer( 1 ) ) then //TODO: For now, 1 CPU
begin
exit ;
end ;
end ;
SYI_ACTIVE_CPU_MASK:
begin
if( Write_Integer( 1 ) ) then //TODO: For now, 1 CPU
begin
exit ;
end ;
end ;
SYI_ACTIVECPU_CNT:
begin
if( Write_Integer( 1 ) ) then //TODO: For now, 1 CPU
begin
exit ;
end ;
end ;
SYI_AVAIL_CPU_BITMAP:
begin
if( Write_Integer( 1 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_AVAIL_CPU_MASK:
begin
if( Write_Integer( 1 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_AVAILCPU_CNT:
begin
if( Write_Integer( 1 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_CPU_AUTOSTART:
begin
if( Write_Integer( 1 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_CPU_FAILOVER:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_CPUCAP_MASK:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_CPUCONF:
begin
if( Write_Integer( 1 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_IO_PRCPU_BITMAP:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_IO_PREFER_CPU:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_MAX_CPUS:
begin
if( Write_Integer( 1 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_POTENTIAL_CPU_BITMAP:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_POTENTIAL_CPU_MASK:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_POTENTIALCPU_CNT:
begin
if( Write_Integer( 1 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_POWERED_CPU_BITMAP:
begin
if( Write_Integer( 1 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_POWERED_CPU_MASK:
begin
if( Write_Integer( 1 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_POWEREDCPU_CNT:
begin
if( Write_Integer( 1 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PRESENT_CPU_BITMAP:
begin
if( Write_Integer( 1 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PRESENT_CPU_MASK:
begin
if( Write_Integer( 1 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PRESENTCPU_CNT:
begin
if( Write_Integer( 1 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PRIMARY_CPUID:
begin
if( Write_Integer( 1 ) ) then //TODO
begin
exit ;
end ;
end ;
These items have to do with multiprocessor systems, which we will cover in the future.
For now, we return values that indicate a single processor.
SYI_CHARACTER_EMULATED:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_CONSOLE_VERSION:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_DECIMAL_EMULATED:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_D_FLOAT_EMULATED:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_F_FLOAT_EMULATED:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_G_FLOAT_EMULATED:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_H_FLOAT_EMULATED:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PALCODE_VERSION:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
These items are specific to VAX or Alpha hardware. I have yet to determine how to
handle these on non-VAX hardware. It may be trickier than it appears at first glance.
For instance, on the VAX, the SYI_DECIMAL_EMULATED item returns 0 if the VAX has
built-in decimal math instructions and 1 if it doesn't and these need to be emulated
in software. So what do we return on a completely different CPU? We could return
0 indicating there is no software emulation of the instructions, but that implies that
there are decimal math instructions - which might not be the case depending
upon the given CPU. If we return 1, and provide some sort of decimal math software
support, that is not the same as instruction emulation on the VAX. For the time
being, we say that none of these emulations are implemented.
SYI_HP_ACTIVE_CPU_CNT:
begin
if( Write_Integer( 1 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_HP_ACTIVE_SP_CNT:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_HP_CONFIG_SBB_CNT:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_HP_CONFIG_SP_CNT:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PARTITION_ID:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_RAD_CPUS:
begin
S := #0#0#0#0#0#0#0#0#255#255#255#255#255#255#255#255 ;
if( Write_String( S ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_RAD_MEMSIZE:
begin
I64 := MMC.Physical_Pages ;
if( I64 > $FFFFFFFF ) then
begin
I64 := $FFFFFFFF ;
end ;
setlength( S, 4 ) ;
move( I64, PChar( S )[ 0 ], 4 ) ;
S := #0#0#0#0' + S + '#255#255#255#255#255#255#255#255 ;
if( Write_String( S ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_RAD_MAX_RAD:
begin
if( Write_Integer( 1 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_RAD_SHMEMSIZE:
begin
S := #0#0#0#0#0#0#0#0#255#255#255#255#255#255#255#255 ;
if( Write_String( S ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_SCSNODE:
begin
if( Write_String( '' ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_SCS_EXISTS:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
These items have to do with AlphaServer GS hard paritions. The only way UOS will
ever support these if it were running on the AlpahServer hardware. We will cross
that bridge if/when we reach it. For now, we return results that indicate we are
not running on that hardware.
SYI_COMMUNITY_ID:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_GALAXY_ID:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_GALAXY_MEMBER:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_GALAXY_PLATFORM:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_GALAXY_SHMEMSIZE:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_GH_RSRVPGCNT:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_GLX_FORMATION:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_GLX_MAX_MEMBERS:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_GLX_MBR_MEMBER:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_GLX_MBR_NAME:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_GLX_TERMINATION:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
These items have to do with Alpha hardware soft partitions. We might provide
some software equivalent to this hardware feature in the future. For now, we return
values indicating that the current system is not part of a soft partition.
SYI_CLUSTER_EVOTES:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_CLUSTER_FSYSID:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_CLUSTER_FTIME:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_CLUSTER_MEMBER:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_CLUSTER_NODES:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_CLUSTER_QUORUM:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_CLUSTER_VOTES:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_NODE_CSID:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_NODE_EVOTES:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_NODE_QUORUM:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_NODE_SYSTEMID:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_NODE_VOTES:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
These items have to do with clusters, which we will cover in the future.
SYI_CONTIG_GBLPAGES:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_FREE_GBLPAGES:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_FREE_GBLSECTS:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_FREE_PAGES:
begin
if( Write_Integer( MMC.Total_Free_Pages ) ) then
begin
exit ;
end ;
end ;
SYI_MAX_PFN:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_MODIFIED_PAGES:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_NPAGED_FREE:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_NPAGED_LARGEST:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_NPAGED_TOTAL:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_NPAGED_INUSE:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PAGED_FREE:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PAGED_INUSE:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PAGED_LARGEST:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PAGED_TOTAL:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PAGEFILE_FREE:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PAGEFILE_PAGE:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PFN_MEMORY_MAP:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PFN_MEMORY_MAP_64:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PMD_COUNT:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PROCESS_SPACE_LIMIT:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PT_BASE:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_PTES_PER_PAGE:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_SHARED_VA_PTES:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_SWAPFILE_FREE:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_SWAPFILE_PAGE:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_USED_GBLPAGCNT:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_USED_GBLPAGMAX:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_USED_PAGES:
begin
if( Write_Integer( MMC.Physical_Pages - MMC.Total_Free_Pages ) ) then
begin
exit ;
end ;
end ;
These items have to do with advanced memory management topics that we will cover in
the future.
SYI_DECNET_FULLNAME:
begin
if( Write_String( _Node_Name ) ) then
begin
exit ;
end ;
end ;
SYI_DECNET_VERSION:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_NODE_AREA:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_NODE_NUMBER:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
These items have to do with networking, which we will cover in the future.
SYI_ERLBUFFERPAG_S2:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_ERRORLOGBUF_S2:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_ERLBUFFERPAGES:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_ERRORLOGBUFFERS:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
These items have to do with error logging - another topic for the future.
SYI_DEF_PRIO_MAX:
begin
if( Write_Integer( Default_Max_Priority ) ) then
begin
exit ;
end ;
end ;
SYI_DEF_PRIO_MIN:
begin
if( Write_Integer( Default_Min_Priority ) ) then
begin
exit ;
end ;
end ;
SYI_PSXFIFO_PRIO_MAX:
begin
if( Write_Integer( POSIX_FIFO_Max_Priority ) ) then
begin
exit ;
end ;
end ;
SYI_PSXFIFO_PRIO_MIN:
begin
if( Write_Integer( POSIX_FIFO_Min_Priority ) ) then
begin
exit ;
end ;
end ;
SYI_PSXRR_PRIO_MAX:
begin
if( Write_Integer( POSIX_RR_Max_Priority ) ) then
begin
exit ;
end ;
end ;
SYI_PSXRR_PRIO_MIN:
begin
if( Write_Integer( POSIX_RR_Min_Priority ) ) then
begin
exit ;
end ;
end ;
SYI_QUANTUM:
begin
if( Write_Integer( USC.Quantum ) ) then
begin
exit ;
end ;
end ;
These items have to do with process scheduling. We will cover multiprocess support
in the future.
SYI_VECTOR_EMULATOR:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_VP_MASK:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_VP_NUMBER:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
These items support vector processing, which is a topic for the future.
SYI_ARCHFLAG:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_ARCH_TYPE:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_CWLOGICALS:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_DAY_OVERRIDE:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_DAY_SECONDARY:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_HW_MODEL:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_ITB_ENTRIES:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_NODE_HWVERS:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_NODE_SWINCARN:
begin
if( Write_String( '00000000' ) ) then //TODO
begin
exit ;
end ;
end ;
SYI_SYSTEM_RIGHTS:
begin
if( Write_String( '' ) ) then //TODO
begin
exit ;
end ;
end ;
// System paramteres...
SYI_MULTITHREAD:
begin
if( Write_Integer( 0 ) ) then //TODO
begin
exit ;
end ;
end ;
These items are related to various different topics that we will cover in the future.
SYI_ARCH_NAME:
begin
if( Write_String( HAL.CPU_Architecture ) ) then
begin
exit ;
end ;
end ;
SYI_BOOT_DEVICE:
begin
if( Write_String( Device_Name( Boot ) ) ) then
begin
exit ;
end ;
end ;
SYI_BOOTTIME:
begin
if( Write_Integer( Boot_Time ) ) then
begin
exit ;
end ;
end ;
SYI_CPU:
begin
if( Write_Integer( __HAL.CPU_Type ) ) then
begin
exit ;
end ;
end ;
SYI_CPUTYPE:
begin
if( Write_Integer( __HAL.Processor_Type ) ) then
begin
exit ;
end ;
end ;
SYI_HW_NAME:
begin
if( Write_String( __HAL.Hardware_Description ) ) then
begin
exit ;
end ;
end ;
SYI_MEMSIZE:
begin
if( Write_Integer( MMC.Physical_Pages ) ) then
begin
exit ;
end ;
end ;
SYI_NODE_SWTYPE:
begin
if( Write_String( 'UOS' ) ) then
begin
exit ;
end ;
end ;
SYI_NODE_SWVERS:
begin
if( Write_String( Version_String ) ) then
begin
exit ;
end ;
end ;
SYI_NODENAME:
begin
if( Write_String( _Node_Name ) ) then
begin
exit ;
end ;
end ;
SYI_PAGE_SIZE:
begin
if( Write_Integer( __HAL.RAM_Page_Size ) ) then
begin
exit ;
end ;
end ;
SYI_PHYSICALPAGES:
begin
if( Write_Integer( MMC.Physical_Pages ) ) then
begin
exit ;
end ;
end ;
SYI_REAL_CPUTYPE:
begin
if( Write_Integer( __HAL.Processor_Type ) ) then
begin
exit ;
end ;
end ;
SYI_SERIAL_NUMBER:
begin
if( Write_Integer( __HAL.Serial_Number ) ) then
begin
exit ;
end ;
end ;
SYI_SID:
begin
if( Write_Integer( __HAL.Hardware_Code ) ) then
begin
exit ;
end ;
end ;
SYI_SYSTYPE:
begin
if( Write_Integer( __HAL.CPU_Type ) ) then
begin
exit ;
end ;
end ;
SYI_TOTAL_PAGES:
begin
if( Write_Integer( MMC.Physical_Pages ) ) then
begin
exit ;
end ;
end ;
SYI_VERSION:
begin
if( Write_String( Version_String ) ) then
begin
exit ;
end ;
end ;
SYI_XCPU:
begin
if( Write_Integer( __HAL.CPU_Type ) ) then
begin
exit ;
end ;
end ;
SYI_XSID:
begin
if( Write_Integer( __HAL.Hardware_Code shr 32 ) ) then
begin
exit ;
end ;
end ;
These items simply return information from the HAL, the MMU, or the Kernel's instance
data.
SYI_SYSTEM_UUID:
begin
setlength( S, 16 ) ;
I64 := __HAL.UUID_Low ;
move( I64, PChar( S )[ 0 ], 8 ) ;
I64 := __HAL.UUID_High ;
move( I64, PChar( S )[ 7 ], 8 ) ;
if( Write_String( S ) ) then
begin
exit ;
end ;
end ;
This item is the only odd one among those that we support at present. A system can have a UUID (Universal Unique ID), which
is 128 bits long, which the HAL partitions into two 64-bit integers. Here we construct
a 16-byte string to hold these values, copy them into the string and then write the
string to the result buffer.
else
begin
Generate_Exception( UOSErr_Bad_Parameter ) ;
exit ;
end ;
end ;
finally
MMC.UnMap_Pages( 0, itemlist, sizeof( Descriptor ) ) ;
end ;
finally
MMC.Unlock_Pages( PID, itemlist, sizeof( Descriptor ) ) ;
end ;
itemlist := itemlist + sizeof( Descriptor ) ;
end ; // while( true )
end ; // TKernel.Get_System_Info
At the end of the descriptor loop, we return an error if the code wasn't recognized.
We unmap the user memory, and iterate to the next descriptor address.
Note that there are several items we haven't even mentioned here because they are related to
system parameters, which is a topic for future discussion. But we've covered most
everything else for this system call, though we will be revisiting it many times in the
future.
In the next article, we will look at the next lexcial function.
Copyright © 2020 by Alan Conroy. This article may be copied
in whole or in part as long as this copyright is included.
|