1 Introduction
2 Ground Rules
Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class
The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up
The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup
Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API
Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O
UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation
UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services
UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN
CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND
Glossary/Index
Downloads
|
DEFINE
In this article, we look at the DEFINE CUSP - the next thing used in our shutdown
script. UCL allows the user to create symbols with assignment statements.
But the DEFINE CUSP provides more flexibility. On VMS, DEFINE was used to
create or assign values to logicals. In UOS, it sets/assigns symbols. First the
user documentation for the CUSP:
DEFINE
Define a symbol name and value.
Format
DEFINE name value{,...}
Parameter
name
Name of the symbol. This must be composed only of alphanumeric characters,
dollar signs ($) and underscores (_).
value{,...}
The value to assign to the symbol. If the value contains any characters other
than uppercase alphanumerics, dollar signs, or underscores, the value should
be enclosed in quotes ("). To include quotes in the string, use two sets of
quotes ("").
You can define multiple equivalence names to a single symbol, by delimiting each
equivalence value with a comma.
Description
DEFINE creates a symbol name that has one or more equivalence names. Each symbol
can be limited to a process, job, group, system, or cluster.
If conflicting qualifiers are specified, the last one takes precedence. If
not specified, the symbol is added to the process symbol table.
If the symbol already exists in the target table with the same name and access
mode, the old value is overwritten by the new one. However, if the symbol
has the NO_ALIAS attribute, a symbol with the same name and a outermore access
level cannot be defined.
Qualifiers
/CLUSTER_SYSTEM
Defines a clusterwide symbol in the LNM$SYSCLUSTER table. You must be signed into
the SYSTEM acount, or have the SYSNAM or SYSPRV privilege to use this qualifier.
/EXECUTIVE_MODE
Creates an executive-mode symbol name. You must have the SYSNAM privilege to use this
qualifer.
/JOB
Creates the symbol in the jobwide symbol table. This is equivalent with the
/TABLE=LNM$JOB qualifier. All processes in the job can access this symbol.
/LOG
/NOLOG
/LOG is the default and indicates that a message is displayed if the new symbol
supersedes and existing one.
/NAME_ATTRIBUTES{=(keyword{,keyword})}
Assigns the specified attributes to the symbol The valid keywords are:
CONFINE | The symbol is not copied into a spawned subprocess.
This only applies to process tables. | |
NO_ALIAS | The symbol name cannot be duplicated in the specified
table in a outer (less privileged) access mode; any previously created identical names
in an outer access mode within the table are deleted. | |
If more than one parameter is specified, the parentheses are required - otherwise they
are optional.
/PROCESS (default)
Places the symbol in the process symbol name table. This is equivalent to using
the /TABLE=LNM$PROCESS qualifier.
/SUPERVISOR_MODE (default)
Creates the symbol in supervisor more in the specified table. The mode of
the symbol must be the same of less privileged than the mode of the table in which
the symbol is being added.
/SYSTEM
Places the symbol in the system symbol table. This is equivalent to using
the /TABLE=LNM$PROCESS qualifier.
/TABLE=name
Creates the symbol in the specified table. The default is /TABLE=LNM$PROCESS.
/TRANSLATION_ATTRIBUTES=(keyword{,keyword})
This qualifier applies to an individual equivalence name. Valid keywords
are one or more of the following:
CONCEALED | Indicates that the equivalence name is the name of
a concealed device. The system will display the logical name rather
than the equivalence value in messages that refer to the device. |
TERMINAL | Translation as a logical terminates with this
equivalence name. No futher translation is done. |
/USER_MODE
Defines the symbol as user-mode. Such symbols are automatically deleted after
the next image rundown or end of a script. These are used to redefine
SYS$INPUT.
Required Privileges
SYSNAM or SYSPRV is required to use the /CLUSTER_SYSTEM qualifier if the user isn't
logged into the SYSTEM account.
SYSNAM is required to use the /EXECUTIVE_MODE qualifier.
Examples
$ DEFINE/USER_MODE TEMP "SYS:/temp/temp1.txt"
In this case, a symbol named "TEMP" is defined in the process symbol table and
given the value "SYS:/temp/temp1.txt". After the next script or image ends,
the symbol is deleted.
$ DEFINE LAST_NAME LIVINGSTON
In this case, the symbol named "LAST_NAME" is defined in the process symbol table
and assigned the value "LIVINGSTON".
$ DEFINE/TABLE=LNM$JOB LIST MYFILE,MYPROGRAM
In this case, the symbol named "LIST" is defined in the job symbol table. Two
equivalence names, "MYFILE" and "MYPROGRAM", are associated with the symbol.
One addition to UOS symbols is that now a symbol can have multiple values. These values are called
"equivalence names" on VMS. You can view them as a dynamic (open-ended) array of values for each
symbol name. When using a symbol in UCL, only the first equivalence value (offset 0) is used
by default. Assigning a symbol in UCL will delete any old one and create a new symbol
of only one value. But system services can be used to access the additional values
for a symbol. For the DIRECTORY CUSP, if the symbol name is used as a logical, each equivalence
value is used, in turn, to list files matching the specification in those equivalence
values. In the case of creating a file using the symbol as a logical,
the first equivalence value with a valid path is used. In the case of opening
an existing file, the all equivalence values are checked to find the file.
The first one found is the one used.
The above functionality also expands a little upon the existing UOS behavior by providing
the ability to associate flags. Let's look at the program code.
function Run : int64 ;
var C, E : string ;
OS : POS_UOS ;
begin
OS := new( POS_UOS, Init ) ;
C := Get_Symbol( 'define$defaults' ) ;
E := '' ;
Result := Do_Define( PChar( OS^.Command_Line ), PChar( C ), E, True ) ;
if( Result <> 0 ) then
begin
OS^.OutputLn( 0, LIB_Get_Exception_Text( 0, Result ) ) ;
if( E <> '' ) then
begin
OS^.OutputLn( 0, ' \' + E + '\' ) ;
end ;
end ;
OS.Free ;
SYS_EXIT( 0 ) ;
end ;
The entry routine of the DEFINE CUSP is like most of the other CUSPs we've covered.
function Do_Define( Command, Defaults : PChar ; var Extra : string ;
Standalone : boolean ) : int64 ;
var Descriptors : array[ 0..1023 ] of TSYS_Descriptor ;
Strings : array[ 0..511 ] of string ;
Equivalences : TStringList ;
Equivalences_Flags : TInteger_List ;
F, Flags : integer ;
Flag_Array : array[ 0..3 ] of int64 ;
Index : integer ;
C, Name, S : string ;
Log : boolean ;
Mode, Typ : integer ;
SL : TStringList ;
Table : string ;
OS : POS_UOS ;
Parameter : string ;
begin
// Setup...
C := trim( Defaults + ' ' + Command ) ;
Mode := PSL_C_USER ;
Log := True ;
Table := 'LNM$PROCESS' ;
Equivalences := TStringList.Create ;
Equivalences_Flags := TInteger_List.Create ;
Name := '' ;
Flags := 0 ;
Flag_Array[ 0 ] := 0 ;
Flag_Array[ 1 ] := LNM_M_CONCEALED ;
Flag_Array[ 2 ] := LNM_M_TERMINAL ;
Flag_Array[ 3 ] := LNM_M_CONCEALED or LNM_M_TERMINAL ;
This is the setup for the main routine of DEFINE.
if( Parse_Switch( 'H|ELP', '', C, Parameter ) = 1 ) then
begin
Output_Help( 0, 0, 'DEFINE' ) ;
exit ;
end ;
// Process parameters and switches...
while( C <> '' ) do
begin
S := Parse_Item( C, Typ ) ;
if( Typ = PIT_Switch ) then
begin
if( Parse_Switch( 'C|LUSTER_SYSTEM', '', C, Parameter ) = 1 ) then
begin
C := '/TABLE=LNM$SYSCLUSTER' ;
end else
if( Parse_Switch( 'J|OB', '', C, Parameter ) = 1 ) then
begin
C := '/TABLE=LNM$JOB' ;
end else
if( Parse_Switch( 'P|ROCESS', '', C, Parameter ) = 1 ) then
begin
C := '/TABLE=LNM$PROCESS' ;
end else
if( Parse_Switch( 'SY|STEM', '', C, Parameter ) = 1 ) then
begin
C := '/TABLE=LNM$SYSTEM' ;
end ;
if( Parse_Switch( 'E|XECUTIVE_MODE', '', C, Parameter ) = 1 ) then
begin
Mode := PSL_C_EXEC ;
end else
if( Parse_Switch( 'E|XECUTIVE_MODE', '', C, Parameter ) = 1 ) then
begin
Mode := PSL_C_EXEC ;
end else
if( Parse_Switch( 'SU|PERVISOR_MODE', '', C, Parameter ) = 1 ) then
begin
Mode := PSL_C_SUPER ;
end else
if( Parse_Switch( 'TA}BLE', '', C, Parameter ) = 1 ) then
begin
if( Parameter = '' ) then
begin
Result := UUI_REQSWVAL ; // parameter required
Extra := '/TABLE' ;
exit ;
end ;
Table := Parameter ;
end else
if( Parse_Switch( 'TR|ANSLATION_ATTRIBUTES', '', C, Parameter ) = 1 ) then
begin
if( Equivalences.Count = 0 ) then
begin
Result := UUI_INVQUAP ; // Invalid switch position
Extra := C ;
exit ;
end ;
SL := Parse_List( Parameter ) ;
F := 0 ;
for Index := 0 to SL.Count - 1 do
begin
if( MinMatch( 'CONCEALED', SL[ Index ], 1 ) ) then
begin
F := F or LNM_M_CONCEALED ;
end else
if( MinMatch( 'TERMINAL', SL[ Index ], 1 ) ) then
begin
F := F or LNM_M_TERMINAL ;
end else
begin
Result := UUI_INVSWVAL ; // Invalid attribute
Extra := SL[ Index ] ;
SL.Free ;
exit ;
end ;
end ;
Equivalences_Flags[ Equivalences.Count - 1 ] := F ;
SL.Free ;
end else
if( Parse_Switch( 'N|AME_ATTRIBUTES', '', C, Parameter ) = 1 ) then
begin
SL := Parse_List( Parameter ) ;
for Index := 0 to SL.Count - 1 do
begin
if( MinMatch( 'CONFINE', SL[ Index ], 1 ) ) then
begin
Flags := Flags or lNM_M_CONFINE ;
end else
if( MinMatch( 'NO_ALIAS', SL[ Index ], 1 ) ) then
begin
Flags := Flags or LNM_M_NO_ALIAS ;
end else
begin
Result := UUI_INVSWVAL ; // Invalid attribute
Extra := SL[ Index ] ;
SL.Free ;
exit ;
end ;
end ;
SL.Free ;
end else
begin
case Parse_Switch( 'L|OG', 'NOL|OG', C, Parameter ) of
1 : Log := True ;
2 : Log := False ;
else
begin
Result := UUI_IVQUAL ; // Invalid qualifier
Extra := C ;
exit ;
end ;
end ;
end ;
end else
The command line requirements for DEFINE would require some enhancements to UUI, but
I don't have time to deal with that at present. Therefore, for now we're going to
parse the command line a little bit differently. We create a simplistic state machine
that handles most qualifiers where ever they occur and the positional one only in
the (list of) equivalence names. Either we are waiting for the symbol name, or we
are waiting for a(nother) equivalence value. Parse_Item is a subroutine
library routine that returns the next item in a command line along with the type of
the item (parameter, qualifier, delimiter, etc). If Parse_Item is a qualifier, we
check each valid switch against it.
In this code, we are processing the qualifiers that we encounter, exiting if any
error occurs. Equivalences_Flags is a list of flags for each equivalence
value encountered. If none are specified, the value is 0.
We start the loop with a check for a /HELP qualifier, in which case we show
the help and exit.
if( ( Typ = PIT_Parameter ) or ( Typ = PIT_Delimiter ) ) then
begin
if( ( Typ = PIT_Delimiter ) and ( Equivalences.Count = 0 ) ) then
begin
Result := UUI_SYNTAX ;
exit ;
end ;
if( Name = '' ) then // Must be the symbol name
begin
Name := S ;
end else
begin
Equivalences.Add( Parse_Quotes( S ) ) ;
Equivalences_Flags.Add( 0 ) ;
if(
( C <> '' )
and
( copy( C, 1, 1 ) <> '/' ) and ( copy( C, 1, 1 ) <> ',' )
) then
begin
Result := UUI_UNRECPA ;
Extra := C ;
exit ;
end ;
end ;
end ;
end ; // whlie( C <> '' )
if( Name = '' ) then
begin
C := Get_Command( '_Name: ' ) ;
end else
if( Equivalences.Count = 0 ) then
begin
C := Get_Command( '_Value: ' ) ;
end ;
end ;
This code handles parameters - the two states of our state machine. Equivalence values
are added to the Equivalences list. When we process an equivalence value,
we also add 0 to the Equivalences_Flags list, which the previous qualifier-handling
code updates if flags are specified for the value. This code also handles commas that
delimit the equivalence values. The loop only ends when the user has entered both
a symbol name and at least one value (or an error occurs). After processing the command line,
if we are missing either parameter, we prompt the user and continue the loop.
// Set up descriptor list...
fillchar( Descriptors, sizeof( Descriptors ), 0 ) ;
for Index := 0 to Equivalences_Flags.Count - 1 do
begin
Descriptors[ Index * 2 ].MBO := $FFFF ;
Descriptors[ Index * 2 ].MBMO := -1 ;
Descriptors[ Index * 2 ].Item_Code := LNM_ATTRIBUTES ;
Descriptors[ Index * 2 ].Buffer_Length := sizeof( int64 ) ;
Descriptors[ Index * 2 ].Buffer_Address :=
int64( @Flag_Array[ Flag_Index( Equivalences_Flags[ Index ] ) ] ) ;
Descriptors[ Index * 2 + 1 ].MBO := $FFFF ;
Descriptors[ Index * 2 + 1 ].MBMO := -1 ;
Descriptors[ Index * 2 + 1 ].Item_Code := LNM_STRING ;
Descriptors[ Index * 2 + 1 ].Buffer_Length := length( Equivalences[ Index ] ) ;
Strings[ Index ] := Equivalences[ Index ] ;
Descriptors[ Index * 2 + 1 ].Buffer_Address := int64( @Strings[ Index ] ) ;
end ;
Once we've processed the command line, we create the descriptors to pass to the system
service. We cannot directly pass the values or the flags from their respective lists.
This is because reading from those lists simply returns a copy of the value, which means
that we'd be passing pointers to stack values that may no longer be valid. Thus, we
have an array of strings that we copy the values into. Why not just use the array
in the first place and avoid the list? Simply put, it would make the code a little
more complex. This may be slightly inefficient, but this CUSP doesn't need to be
high performance. For the flags, there are only four possible values, so we set
up a four-element array in the setup code, and then we refer to the array element
that corresponds to the associated flags. The Flag_Index function converts
the flag value to the array index (see below).
Result := CRELNM( Flags, Table, Name, Mode, int64( @Descriptors ) ) ;
if( Result = SS_SUPERSEDE ) then
begin
Result := 0 ;
if( Log ) then
begin
OS := new( POS_UOS, Init ) ;
OS^.OutputLn( 0, 'DEFINE-S-DEFINE_SUPERCEDE, Existing symbol superceded' ) ;
OS.Free ;
end ;
end ;
end ; // Do_Define
Finally, we call the CRELNM service to define the symbol. If it indicates that the
symbol was superseded and /LOG was specified, we output a notice.
function Flag_Index( I : integer ) : integer ;
var L : integer ;
begin
for L := 0 to 3 do
begin
if( Flag_Array[ L ] = I ) then
begin
Result := L ;
exit ;
end ;
end ;
Result := 0 ; // Should never get here...
end ;
This function converts from a flag(s) value into an array index..
function Parse_List( C : string ) : TstringList ;
var I : integer ;
begin
Result := TStringList.Create ;
if( copy( C, 1, 1 ) = '(' ) then
begin
C := copy( C, 2, length( C ) ) ;
end ;
if( copy( C, length( C ), 1 ) = ')' ) then
begin
setlength( C, length( C ) - 1 ) ;
end ;
while( C <> '' ) do
begin
I := pos( ',', C ) ;
if( I = 0 ) then
begin
Result.Add( lowercase( C ) ) ;
exit ;
end ;
Result.Add( lowercase( copy( C, 1, I - 1 ) ) ) ;
C := copy( C, I + 1, length( C ) ) ;
end ;
end ;
This function parses a list of one or more comma-delimited values.
In the next article, we will look at the CRELNM service.
|