1 Introduction
2 Ground Rules
Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class
The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up
The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup
Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API
Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O
UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation
UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services
UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN
CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND
Glossary/Index
Downloads
|
Putting it All Together
SYS_PUT
Now that we have the entire stack for terminal output from the executive, let's
look at how an application makes the call to send output.
The LIB_Put_Output function in Starlet is used to send a string to the process'
sys$output device (at this point, the terminal associated with the process).
procedure LIB_Put_Output( const S : string ) ;
var RAB : TRAB ;
begin
fillchar( RAB, sizeof( RAB ), 0 ) ;
RAB.RAB_Size := sizeof( RAB ) ;
RAB.RAB_W_ISI := RH_SysOutput ;
RAB.RAB_L_RBF := integer( PChar( S ) ) ;
RAB.RAB_W_RSZ := length( S ) ;
RMS.SYS_Put( RAB ) ;
end ;
We set up a RAB (Record Access Block) structure with a pointer to the string, the string length, and
set RAB_W_ISI to the sys$output relocation handle (RH_SysOutput). Note that we pass the RAB structure to the RMS
unit. RMS (Record Management Services) is used to cook data for files on stores.
For terminals, RMS just passes the data to the TTerminal instance which uses the
output filter to cook the data. Here's the SYS_Put function:
procedure SYS_Put( var RAB : TRAB ) ;
var Status : byte ;
SysRequest : TFile_Request ;
begin
// Stream output...
fillchar( SysRequest, sizeof( SysRequest ), 0 ) ;
SysRequest.Request.Subsystem := UOS_Subsystem_FIP ;
SysRequest.Request.Request := UOS_FIP_SYS_Out ;
SysRequest.Request.Length := sizeof( SysRequest.FRB ) ;
SysRequest.Request.Status := integer( @Status ) ;
SysRequest.FRB.Handle := RAB.RAB_W_ISI ;
SysRequest.FRB.Buffer := RAB.RAB_L_RBF ;
SysRequest.FRB.Length := RAB.RAB_W_RSZ ;
SysRequest.FRB.Flags := RAB.RAB_L_ROP and TFRBF_RAB_Mask ;
Call_To_Ring0( integer( @SysRequest ) ) ;
end ;
This function constructs a system request and calls to the Kernel. All FiP-related
calls use the TFile_Request structure. The FRB (File Request Block) portion of
structure contains everything necessary for file/device operations. Fairly
typical of such structures are the file handle, a buffer and length, and some
flags. File operation flags apply to both RMS (cooked) and raw I/O operations;
the TFRBF_RAB_Mask value is used to select the relevant executive (raw) flags
(i.e. removes any RMS flags), since the executive knows nothing about RMS.
We now turn to the TUOS_FiP.API method:
procedure TUOS_FiP.API( Request : int64 ; SReq : TSystem_Request ) ;
var Base, Offset : int64 ;
BBase, BOffset : int64 ; // I/O buffer
PID : TPID ;
SysReqFRB : PFile_Request ;
begin
PID := Kernel.PID ;
case SReq.Request of
UOS_FIP_SYS_Out:
begin
if( SReq.Length < sizeof( TFRB ) ) then
begin
Set_Last_Error( Create_Error( UOSErr_Invalid_System_Request ) ) ;
exit ;
end ;
Offset := MMC.Lock_Pages( PID, Request, sizeof( TFile_Request ) ) ;
try
Base := MMC.Map_Pages( PID, 0, Request, sizeof( TFile_Request ), MAM_Read or MAM_Lock ) ;
if( Base = 0 ) then // Couldn't map memory
begin
USC.Set_Process_Exception( PID, MMC.Last_Error ) ;
if( MMC.Last_Error = nil ) then
begin
Set_Last_Error( Create_Error( UOSErr_Memory_Address_Error ) ) ;
end ;
exit ;
end ;
SysReqFRB := PFile_Request( Base + Offset ) ;
BOffset := MMC.Lock_Pages( PID, SysReqFRB.FRB.Buffer, SysReqFRB.FRB.Length ) ;
try
BBase := MMC.Map_Pages( PID, 0, SysReqFRB.FRB.Buffer, SysReqFRB.FRB.Length, MAM_Read or MAM_Lock ) ;
if( BBase = 0 ) then // Couldn't map buffer memory
begin
USC.Set_Process_Exception( PID, MMC.Last_Error ) ;
if( MMC.Last_Error = nil ) then
begin
Set_Last_Error( Create_Error( UOSErr_Memory_Address_Error ) ) ;
end ;
exit ;
end ;
Write_File( SysReqFRB.FRB.Handle, SysReqFRB.FRB.Stream,
PAnsiChar( pointer( BBase + BOffset ) ),
SysReqFRB.FRB.Length, SysReqFRB.FRB.Flags ) ;
MMC.UnMap_Pages( 0, SysReqFRB.FRB.Buffer, SysReqFRB.FRB.Length ) ;
finally
MMC.Unlock_Pages( PID, SysReqFRB.FRB.Buffer, SysReqFRB.FRB.Length ) ;
end ;
MMC.UnMap_Pages( 0, Request, sizeof( TFile_Request ) ) ;
finally
MMC.Unlock_Pages( PID, Request, sizeof( TFile_Request ) ) ;
end ;
end ; // UOS_FIP_SYS_Out
//else // Error
end ; // case SReq.Request
end ; // TUOS_FiP.API
This method is very similar to the API method in the SSC. In this case, the
UOS_FIP_SYS_Out method is processed and then Write_File is called.
Before we look at the Write_File method, we need to take a detour and cover the
TFiP_File class, which is the base class for all "file" classes used by the FiP
component. In the previous article, we discussed the association of a TFiP_File
(or descendent thereof) instance with handles (TResource instances) and devices.
Now we will see what those classes look like.
TFiP_File
type TFiP_File = class( TUOS_File )
public // constructor...
constructor Create( Kernel : TUOS_Kernel ) ;
destructor Destroy ; override ;
private // Instance data...
_Kernel : TUOS_Kernel ;
_File : TUOS_File ;
_Handles : TList ;
public // API...
function Is_Class( Name : PChar ) : boolean ;
override ;
function Create_Stream( Name : int64 ) : longint ;
override ;
procedure Delete_Stream( Name : int64 ;
Index : longint ) ; override ;
function Max_Stream : longint ; override ;
function Stream_Name( Index : longint ) : int64 ;
override ;
function Get_Contiguous : boolean ; override ;
procedure Set_Contiguous( Value : boolean ) ; override ;
// I/O...
function Read( Stream : longint ;
Position : TStore_Address64 ;
Length : TStore_Size64 ; var Buff ) : TStore_Size64 ;
override ;
function Write( Stream : longint ;
Position : TStore_Address64 ;
Length : TStore_Size64 ; var Buff ) : TStore_Size64 ;
override ;
function Get_Stream_Size( Stream : longint ) : TStore_Size64 ;
override ;
procedure Set_Stream_Size( Stream : longint ;
Value : TStore_Size64 ) ;
override ;
function Get_File_Size : int64 ;
override ;
procedure Set_File_Size( Value : int64 ) ;
override ;
function Read_Only : boolean ;
override ;
function Write_Only : boolean ;
override ;
function XSpaceAvail : int64 ;
override ;
function Record_Size : int64 ; virtual ;
procedure Add_Handle( Handle : TResource ) ; virtual ;
procedure Remove_Handle( Handle : TResource ) ;
virtual ;
function Is_Store : boolean ; override ;
end ; // TFiP_File
// constructor and destructor...
constructor TFiP_File.Create( Kernel : TUOS_Kernel ) ;
begin
inherited Create ;
_Kernel := Kernel ;
_Handles := TList.Create ;
end ;
destructor TFiP_File.Destroy ;
begin
_Handles.Free ; // It is assumed that all handles have been closed before freeing this instance
inherited Destroy ;
end ;
// API...
function TFiP_File.Is_Class( Name : PChar ) : boolean ;
var _N : string ;
begin
_N := Name ;
_N := lowercase( _N ) ;
Result := ( ( _N = 'tfip_file' ) or ( _N = 'tfile' ) or ( _N = 'tuos_file' ) or ( _N = 'tcommon_com_interface' ) ) ;
end ;
function TFiP_File.Create_Stream( Name : int64 ) : longint ;
begin
Result := _File.Create_Stream( Name ) ;
end ;
procedure TFiP_File.Delete_Stream( Name : int64 ; Index : longint ) ;
begin
_File.Delete_Stream( Name, Index ) ;
end ;
function TFiP_File.Max_Stream : longint ;
begin
Result := _File.Max_Stream ;
end ;
function TFiP_File.Stream_Name( Index : longint ) : int64 ;
begin
Result := _File.Stream_Name( Index ) ;
end ;
function TFiP_File.Get_Contiguous : boolean ;
begin
Result := _File.Get_Contiguous ;
end ;
procedure TFiP_File.Set_Contiguous( Value : boolean ) ;
begin
_File.Set_Contiguous( Value ) ;
end ;
// I/O...
function TFiP_File.Read( Stream : longint ; Position : TStore_Address64 ;
Length : TStore_Size64 ; var Buff ) : TStore_Size64 ;
begin
Result := _File.Read( Stream, Position, Length, Buff ) ;
end ;
function TFiP_File.Write( Stream : longint ; Position : TStore_Address64 ;
Length : TStore_Size64 ; var Buff ) : TStore_Size64 ;
begin
Result := _File.Write( Stream, Position, Length, Buff ) ;
end ;
function TFiP_File.Get_Stream_Size( Stream : longint ) : TStore_Size64 ;
begin
Result := _File.Get_Stream_Size( Stream ) ;
end ;
procedure TFiP_File.Set_Stream_Size( Stream : longint ;
Value : TStore_Size64 ) ;
begin
_File.Set_Stream_Size( Stream, Value ) ;
end ;
function TFiP_File.Get_File_Size : int64 ;
begin
Result := _File.Get_Stream_Size( 0 ) ;
end ;
procedure TFiP_File.Set_File_Size( Value : int64 ) ;
begin
_File.Set_Stream_Size( 0, Value ) ;
end ;
function TFiP_File.Read_Only : boolean ;
begin
Result := _File.Read_Only ;
end ;
function TFiP_File.Write_Only : boolean ;
begin
Result := _File.Write_Only ;
end ;
function TFiP_File.XSpaceAvail : int64 ;
begin
Result := _File.XSpaceAvail ;
end ;
function TFiP_File.Record_Size : int64 ;
begin
Result := 1 ;
end ;
procedure TFiP_File.Add_Handle( Handle : TResource ) ;
begin
_Handles.Add( Handle ) ;
end ;
procedure TFiP_File.Remove_Handle( Handle : TResource ) ;
begin
_Handles.Remove( Handle ) ;
end ;
function TFiP_File.Is_Store : boolean ;
begin
Result := True ; // Default
end ;
This class is a thin veneer around a TUOS_File. However, it is not a descendent
of the TUOS_Class - it simply contains an instance of one so that it can be used
as an interface to a native File System file (we'll look at that in a later
article). As a consequence, the methods don't do very much and no further
explanation is necessary. The only other aspect of this is the Handles list to
keep track of handles attached to the file instance.
Now we'll look at the TFip_Terminal_File class, which is a descendent of
TFiP_File.
type TFiP_Terminal_File = class( TFiP_File )
private // Instance data...
Terminal : TTerminal ;
public // API...
function Is_Class( Name : PChar ) : boolean ;
override ;
function Create_Stream( Name : int64 ) : longint ;
override ;
// Delete stream...
procedure Delete_Stream( Name : int64 ; Index : longint ) ;
override ;
// Stearm information...
function Max_Stream : longint ; override ;
function Stream_Name( Index : longint ) : int64 ;
override ;
// I/O...
function Read( Stream : longint ;
Position : TStore_Address64 ;
Length : TStore_Size64 ; var Buff ) : TStore_Size64 ;
override ;
function Write( Stream : longint ;
Position : TStore_Address64 ;
Length : TStore_Size64 ; var Buff ) : TStore_Size64 ;
override ;
function Get_Stream_Size( Stream : longint ) : TStore_Size64 ;
override ;
procedure Set_Stream_Size( Stream : longint ;
Value : TStore_Size64 ) ;
override ;
function Get_Contiguous : boolean ; override ;
procedure Set_Contiguous( Value : boolean ) ;
override ;
function Get_File_Size : int64 ; override ;
procedure Set_File_Size( Value : int64 ) ;
override ;
function Read_Only : boolean ; override ;
function Write_Only : boolean ; override ;
function XSpaceAvail : int64 ; override ;
function Record_Size : int64 ; override ;
function Is_Store : boolean ; override ;
end ; // TFiP_Device_File
This class simply overrides the various methods and adds a TTerminal instance.
function TFiP_Terminal_File.Is_Class( Name : PChar ) : boolean ;
var _N : string ;
begin
_N := Name ;
_N := lowercase( _N ) ;
Result := ( _N = 'tfip_terminal_file' ) ;
if( not Result ) then
begin
Result := inherited Is_Class( Name ) ;
end ;
end ;
This is the standard Is_Class method that we've seen before.
function TFiP_Terminal_File.Create_Stream( Name : int64 ) : longint ;
begin
Result := 0 ;
end ;
procedure TFiP_Terminal_File.Delete_Stream( Name : int64 ; Index : longint ) ;
begin
end ;
function TFiP_Terminal_File.Max_Stream : longint ;
begin
Result := 0 ;
end ;
function TFiP_Terminal_File.Stream_Name( Index : longint ) : int64 ;
begin
Result := 0 ;
end ;
function TFiP_Terminal_File.Get_Stream_Size( Stream : longint ) : TStore_Size64 ;
begin
Result := 0 ;
end ;
procedure TFiP_Terminal_File.Set_Stream_Size( Stream : longint ;
Value : TStore_Size64 ) ;
begin
end ;
Because only store files have streams, we ignore all stream-related methods. We
return 0 for any functions.
function TFiP_Terminal_File.Get_Contiguous : boolean ;
begin
Result := False ;
end ;
procedure TFiP_Terminal_File.Set_Contiguous( Value : boolean ) ;
begin
end ;
function TFiP_Terminal_File.Get_File_Size : int64 ;
begin
Result := 0 ;
end ;
procedure TFiP_Terminal_File.Set_File_Size( Value : int64 ) ;
begin
end ;
function TFiP_Terminal_File.Read_Only : boolean ;
begin
Result := Terminal.Stream.Read_Only ;
end ;
function TFiP_Terminal_File.Write_Only : boolean ;
begin
Result := Terminal.Stream.Write_Only ;
end ;
function TFiP_Terminal_File.XSpaceAvail : int64 ;
begin
Result := 0 ;
end ;
function TFiP_Terminal_File.Record_Size : int64 ;
begin
Result := 0 ; // Not a record-formatted device
end ;
function TFiP_Terminal_File.Is_Store : boolean ;
begin
Result := False ;
end ;
Many other methods don't apply to terminals either. As a consequence, these
methods also do nothing, or return 0. Is_Store returns false, since terminals
are not stores.
function TFiP_Terminal_File.Read( Stream : longint ;
Position : TStore_Address64 ;
Length : TStore_Size64 ; var Buff ) : TStore_Size64 ;
var UEC : TUnified_Exception ;
begin
Result := Terminal.Read_Data( Buff, Length, UEC ) ;
if( UEC <> nil ) then
begin
Set_Last_Error( UEC ) ;
end ;
end ;
function TFiP_Terminal_File.Write( Stream : longint ;
Position : TStore_Address64 ;
Length : TStore_Size64 ; var Buff ) : TStore_Size64 ;
var UEC : TUnified_Exception ;
begin
Result := Terminal.Write_Data( Buff, Length, UEC ) ;
if( UEC <> nil ) then
begin
Set_Last_Error( UEC ) ;
end ;
end ;
The Read and Write methods simply wrap the TTerminal read and write methods.
Write_File
Now let's return to the Write_File method of the FiP.
function TUOS_FiP.Write_File( Handle : THandle ; Stream : longint ;
Buff : PAnsiChar ; Length : int64 ; Flags : integer ) : TUnified_Exception ;
var Len : TStore_Size64 ;
Resource : TResource ;
begin
Set_Last_Error( nil ) ;
Handle := USC.Translate_Handle( Kernel.PID, Handle ) ;
if( not USC.Valid_Handle( Kernel.PID, Handle ) ) then
begin
Result := Set_Last_Error( Create_Error( UOSErr_Invalid_Handle ) ) ;
exit ;
end ;
Resource := TResource( Handle ) ;
Len := Resource._File.Write( Stream, Resource.Position, Length, Buff[ 0 ] ) ;
Result := Resource._File.Last_Error ;
if( Resource._File.Is_Store ) then
begin
Resource.Position := Resource.Position + Len ;
end ;
end ;
When writing to a file, we first translate the handle (we will talk about the
Translate_Handle method in a moment). Next we check to see if the handle is valid
and exit with an error if it isn't. Then we convert from a handle to a
TResource instance. Next, we call the file's write method and set the current
exception (which will be nil if there is no exception). Finally, if the file is
a store we adjust the resources's position. This Position is the current
context for store files. Note that the Write call uses the current position
and passes the Length parameter. Write returns the length actually written, and
that is what we add the current position*. Thus, a TResource provides a context.
If the file has multiple accessors, each one has its own context - as would be
expected. And this explains why we need the extra level of indirection
provided by TResource. We will delve into multiple concurrent file access in a
future article.
* We do this because the write operation may fail to write all characters to
the file and we only want to update the context to the actual position - not
what the position would have been if all the bytes were written.
function TUSC.Translate_Handle( PID : TPID ; Handle : THandle ) : THandle ;
var Process : TProcess ;
begin
Result := Handle ;
if( PID = 0 ) then
begin
Process := Get_Process( Kernel.PID ) ;
end else
begin
Process := Get_Process( PID ) ;
end ;
if( ( Process = nil ) or ( Process._Handles = nil ) ) then
begin
exit ;
end ;
case Handle of
RH_SysInput : Result := Process._Sys_Input ;
RH_SysOutput : Result := Process._Sys_Output ;
RH_SysError : Result := Process._Sys_Error ;
RH_SysCommand : Result := Process._Sys_Command ;
end ;
end ;
The purpose of Translate_Handle is to convert a redirection handle constant to
the actual handle associated with a process. First we get the appropriate
TProcess instance, and exit with an exception if it isn't valid. We only
translate the relocation handles, so we switch based on the passed handle and
return the corresponding actual handle. If the passed handle isn't one of the
relocation handles, we return the passed handle. Thus, this is a safe method to
call in all circumstances. But it doesn't validate a handle. If the passed
handle is invalid, it will return that invalid handle. The next method will
validate a handle.
function TUSC.Valid_Handle( PID : TPID ; Handle : THandle ) : boolean ;
var Process : TProcess ;
begin
Result := False ;
if( PID = 0 ) then
begin
Process := Get_Process( Kernel.PID ) ;
end else
begin
Process := Get_Process( PID ) ;
end ;
if( ( Process = nil ) or ( Process._Handles = nil ) ) then
begin
Set_Error( UOS_User_Security_Error_Invalid_PID ) ;
exit ;
end ;
Result := Process._Handles.ItemIndex( Handle ) <> -1 ;
end ;
Determining if a handle is valid for a process is a simple matter of checking to
see if the handle is in the _Handles list.
Putting it All Together
The last several articles have covered the code involved in outputting characters
to a terminal. It may seem like a lot of effort for a simple result, but we have
set up the framework for a whole lot more than simply outputting characters to
a terminal. We will expand upon this more in the future. The following is a
conceptual diagram showing the basic UOS executive I/O architecture for two
processes accessing the same file/device (one of which is accessing it through
two different handles).

Now that we've covered all the classes involved, let's bring it
all together and follow the execution through from the application to the
terminal device.
- We start with our call to LIB_Put_Output.
- LIB_Put_Output fills a RAB structure and calls to Sys_Put in RMS.
- If this were a cooked store file, RMS would do some extra processing. But since
this is a terminal, Sys_Put constructs a TFile_Requesst for the UOS_FIP_SYS_Out
system call, and then calls to the executive through ring 0.
- The Kernel's API receives the call and passes it on to the FiP's API handler.
- The FiP calls Write_File, which gets the TResource instance for the passed (and translated) handle,
and calls the associated file's Write method.
- In this case (writing the prompt from UCL to the terminal), the resource's
associated file is a TFiP_Terminal_File instance. Its write method calls the
terminal's Write_Data method.
- The terminal is a FiP TTerminal instance, whose Write_Data method calls its output
filter's Write method.
- The filter adds the character(s) to the ring buffer and,
assuming the device is ready to accept output, the Write method calls
Write_To_Driver.
- Write_To_Driver verifies that there is something in the buffer and
that the device is ready to accept output, and then calls the terminal's
associated stream's Write_Data method.
- Finally, the stream's Write_Data method calls the driver's
Output method, which writes the data to the device.
In the next article, we will begin a discussion of how to get input from a
terminal.
Copyright © 2018 by Alan Conroy. This article may be copied
in whole or in part as long as this copyright is included.
|