1 Introduction
2 Ground Rules

Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class

The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up

The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup

Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API

Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O

UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation

UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services

UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN

CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND

Glossary/Index


Downloads

More on symbols

We introduced TRNLNM back in article 68. TRNLNM provides a means of querying the system symbol tables and the interface was fairly simple. VMS supports some additional capabilities for symbols and in this article we will discuss those features. Note that the default behavior will still match how things work now. Use of the new features is optional. Thus, all existing code will continue to work. When multiple symbol names exist with different cases but are otherwise the same, they are referred to as "aliases".

The first feature is that of case-sensitive symbol names. VMS allows this and so UOS will too. However, unless specifically requested, we will treat the names as uppercase. Thus, multiple versions (using different cases) of a symbol can exist.

The second feature is that a symbol can have multiple values, accessable via an index. Unless specifically requested, there will be a single value (always index 0).

The third feature is that symbols of the same name (even of the same case) can be defined for each ring (0-3). Ring 3 is the application ring and is the default ring for symbols. The ring associated with a symbol is sometimes referred to as the "access mode".

The final feature is the inclusion of flags with each symbol. These flags define various options, such as whether or not aliases are allowed for the symbol.

We will address these features in detail in future articles. But to prepare for this, we need to alter the symbol table implementation. We will briefly review these changes here. The basic idea is this: the symbol list in the table indicates the symbol names normalized to uppercase. This allows us to quickly find all aliases of a given symbol name. Each entry in the list has an associated list of symbols which defines all of the symbol alises, including the access mode (we prefix the case-sensitive name with the access mode). Each of those entries has an associated TSymbol instance which defines the flags for that symbol and contains a list of values. Here is an illustration of the overall data structure, including the path used to find the value for the symbol "MySymbol":

type TSymbol = class
                   public // constructors and destructors...
                       constructor Create( const _Value : string ;
                           _Flags : integer ) ;
                       destructor Destroy ; override ;

                   public // Instance data...
                       Flags : integer ; // LNM_* flags
                       Values : TStringList ; // Equivalence values...
               end ; // TSymbol

// constructors and destructors...

constructor TSymbol.Create( const _Value : string ; _Flags : integer ) ;

begin
    inherited Create ;

    Flags := _Flags ;
    Values := TStringList.Create ;
    Values.Add( _Value ) ;
end ;


destructor TSymbol.Destroy ;

begin
    FreeandNil( Values ) ;

    inherited Destroy ;
end ;
This is the new class to hold all the values of a given symbol. There is one of these instances for each alias, for each access mode defined. It simply wraps a TStringList and adds flags.

destructor TSymbol_Table.Destroy ;

var I, Loop : integer ;
    Symbols : TStringList ;

begin
    for Loop := 0 to List.Count - 1 do
    begin
        Symbols := TStringList( List.Objects[ Loop ] ) ;
        for I := 0 to Symbols.Count - 1 do
        begin
            TSymbol( Symbols.Objects[ I ] ).Free ;
        end ;
        Symbols.Free ;
        List.Objects[ Loop ] := nil ;
    end ;
    FreeandNil( List ) ;

    inherited Destroy ;
end ;
The destructor releases all of the memory held by the table. As before, List is a TStringlist containing the variable names. But instead of the associated object being a string object, it is now a TStringlist. That is, List is a stringlist of stringlists. The sub-stringlist contains all of the aliases of the symbol. That list's object is a TSymbol instance.

To free this structure, we iterate through all the symbols in the table, then iterate through the sub-list (aliases) for each symbol. We free the TSymbol instance, which frees up the list of values. When we are done iterating through the aliases, we free the alias stringlist. Finally, we free List.

procedure TSymbol_Table.Set_Value( Name, Value : PChar ; Len : longint ;
    Access : integer = 3 ) ;

var I : integer ;
    N, uN, V : Ansistring ;
    Prefix : char ;
    Symbol : TSymbol ;
    Symbol_List : TStringList ;

begin
    // Process parameters...
    N := Ansistring( Name ) ;
    uN := uppercase( N ) ;
    if( Len = -1 ) then
    begin
        V := Ansistring( Value ) ;
    end else
    begin
        setlength( V, Len ) ;
        move( Value[ 0 ], PChar( V )[ 0 ], Len ) ;
    end ;
    Prefix := char( Access ) ;

    // Set/create value...
    I := List.Indexof( uN ) ;
    if( I = -1 ) then // Not already defined
    begin
        Symbol_List := TStringList.Create ;
        Symbol_List.Sort ;
        List.AddObject( uN, Symbol_List ) ;
        Symbol_List.AddObject( Prefix + N, TSymbol.Create( V, 0 ) ) ;
        exit ;
    end ;
    Symbol_List := TStringList( List.Objects[ I ] ) ;
    I := Symbol_List.Indexof( Prefix + N ) ;
    if( I = -1 ) then // Doesn't exist yet
    begin
        Symbol_List.AddObject( Prefix + N, TSymbol.Create( V, 0 ) ) ;
        exit ;
    end ;
    Symbol := TSymbol( Symbol_List.Objects[ I ] ) ;
    Symbol.Values[ 0 ] := V ;
end ; // TSymbol_Table.Set_Value
We've added an access mode to the parameter list, which defaults to 3. We locate the uppercase (normalized) symbol name in List. Once we've found the symbol, we look for an alias with an exact case match and with the proper access mode. If not found, we create it. Otherwise we alter the value.

function TSymbol_Table.Exists( Name : Pchar ; CS : boolean = false ;
    Access : integer = 3 ) : boolean ;

begin
    Result := Indexof( Ansistring( Name ), CS, Access ) <> -1 ;
end ;
We've added CS and Access parameters (defaulting to False and 3, respectively). Then we call a new method, Indexof, to look up the symbol.

procedure TSymbol_Table.Delete( Name : Pchar ; CS : boolean = False ;
    Access : integer = 3 ) ;

var I, L : integer ;
    N, uN : Ansistring ;
    Prefix : char ;
    Symbols : TStringList ;

begin
    // Setup...
    N := Ansistring( Name ) ;
    uN := uppercase( N ) ;
    Prefix := char( Access ) ;

    // Look up the symbol...
    L := List.Indexof( uN ) ;
    if( L = -1 ) then // Not found at all
    begin
        exit ;
    end ;
    Symbols := TStringList( List.Objects[ L ] ) ;
    I := Symbols.Indexof( Prefix + N ) ;
    if( I = -1 ) then // Exact match not found
    begin
        if( not CS ) then
        begin
            for I := 0 to Symbols.Count - 1 do
            begin
                if( copy( Symbols[ I ], 1, 1 ) = Prefix ) then
                begin
                    TSymbol( Symbols.Objects[ I ] ).Free ;
                    Symbols.Delete( I ) ;
                    if( Symbols.Count = 0 ) then // All aliases deleted
                    begin
                        Symbols.Free ;
                        List.Delete( L ) ;
                    end ;
                    break ;
                end ;
            end ; // for I := 0 to Symbols.Count - 1
        end ; // if( not CS )
        exit ;
    end ; // if( I = -1 )

    // Delete the symbol...
    TSymbol( Symbols.Objects[ I ] ).Free ;
    Symbols.Delete( I ) ;
    if( Symbols.Count = 0 ) then // All aliases deleted
    begin
        Symbols.Free ;
        List.Delete( L ) ;
    end ;
end ; // TSymbol_Table.Delete
Again, we add defaulted CS and Access parameters. We look up the the normalized name, Then we look up the exact name/access mode in the alias list. If that isn't found, and CS is false (indicating case-insensitive), we iterate through the aliases and delete all that have the passed access mode. If the exact match is found, we delete only that alias. In either case, once we've finished any/all deletions, we check to see if the alias list is empty. If so, the symbol has been completely deleted and we remove the entry in the normalized list.

function TSymbol_Table.Info( Name : PChar ; var Len : longint ;
    CS : boolean ; Access, Index : integer ; var Flags, Mode, Indexes : int64 ;
    var aName : PChar ) : PChar ;

var I : integer ;
    N, uN, Prefix, S : Ansistring ;
    Symbols : TStringList ;
    Symbol : TSymbol ;

begin
    // Setup...
    Result := nil ;
    Len := 0 ;
    N := Ansistring( Name ) ;
    uN := uppercase( N ) ;

    // Find symbol...
    I := List.Indexof( N ) ;
    if( I = -1 ) then
    begin
        exit ;
    end ;
    Symbols := TStringList( List.Objects[ I ] ) ;
    while( true ) do
    begin
        Prefix := char( Access ) ;
        for I := 0 to Symbols.Count - 1 do
        begin
            S := Symbols[ I ] ;
            if( copy( S, 1, 1 ) = Prefix ) then
            begin
                if( CS ) then // Case-sensisitve
                begin
                    if( S <> Prefix + N ) then // Not exact match
                    begin
                        continue ;
                    end ;
                end ;
                Symbol := TSymbol( Symbols.Objects[ I ] ) ;
                Indexes := Symbol.Values.Count - 1 ;
                if( ( Index < 0 ) or ( Index > Indexes ) ) then
                begin
                    Index := 0 ; // Use index 0 if requested index is out of range
                end ;
                Result := PChar( Symbol.Values[ Index ] ) ;
                Len := length( Symbol.Values[ Index ] ) ;
                Mode := Access ;
                Flags := Symbol.Flags ;
                aName := PChar( S ) + 1 ;
                exit ;
            end ;
        end ; // for I := 0 to Symbols.Count - 1

        // Not found at specified access level, check next inner level...
        if( Access = 0 ) then
        begin
            exit ; // Exhausted the search with no matches
        end ;
        dec( Access ) ;
    end ; // while( true )
end ; // TSymbol_Table.Info
We loop through the aliases, looking for a match with the specified access mode (taking case-sensitivity into account, if necessary). If not found, we decrement the access mode and try again. This is because, we always look for the outermost access modes first, proceeding to innermore modes until the symbol is found. Obviously, we exit if a match isn't found on the innermost mode. Otherwise we return information about the symbol including it's value, actual name, flags, and access mode.

function TSymbol_Table.Value( Name : PChar ; var Len : longint ;
    CS : boolean ; Access : integer ) : PChar ;

var Flags, Mode : int64 ;
    aName : PChar ;

begin
    Result := Info( Name, Len, CS, Access, 0, Flags, Mode, aName ) ;
end ;
We've added CS and Access and changed this function to call the Info method, ignoring what it returns other than the symbol value.

function TSymbol_Table.Get_Index( Index : integer ; var Len : longint ;
    Access : integer = 3 ) : PChar ;

var I : integer ;
    Prefix : string ;
    Symbols : TStringList ;

begin
    // Setup...
    Result := nil ;
    if( ( Index < 0 ) or ( Index >= Count ) ) then
    begin
        exit ; // Out of range
    end ;
    Symbols := TStringList( List.Objects[ I ] ) ;

    // Search for match...
    while( true ) do
    begin
        Prefix := Char( Access ) ;
        for I := 0 to Symbols.Count - 1 do
        begin
            if( copy( Symbols[ I ], 1, 1 ) = Prefix ) then
            begin
                Result := PChar( TSymbol( Symbols.Objects[ I ] ).Values[ 0 ] ) ;
                Len := length( TSymbol( Symbols.Objects[ I ] ).Values[ 0 ] ) ;
                exit ;
            end ;
        end ; // for I := 0 to Symbols.Count - 1

        // Not found at specified access level, check next inner level...
        if( Access = 0 ) then
        begin
            exit ; // Exhausted the search with no matches
        end ;
        dec( Access ) ;
    end ; // while( true )
end ;
We've added Access to the parameters. Like the previous function, we search the alias table from the requested access mode to the innermost access mode.

function TSymbol_Table.IndexOf( Value : string ; CS : boolean = false ;
    Access : integer = 3 ) : integer ;

var I, L : integer ;
    Symbols : TStringList ;
    Prefix, S, UValue : string ;

begin
    // Setup...
    Result := -1 ; // Assume not found...
    UValue := uppercase( Value ) ;
    Prefix := char( Access ) ;

    // Look up the symbol...
    I := List.Indexof( UValue ) ;
    if( I = -1 ) then // Not found at all
    begin
        exit ;
    end ;
    Symbols := TStringList( List.Objects[ I ] ) ;

    // Match by case...
    for L := 0 to Symbols.Count - 1 do
    begin
        S := Symbols[ L ] ;
        if( Prefix >= copy( S, 1, 1 ) ) then
        begin
            if( not CS ) then
            begin
                Result := I ;
                exit ;
            end ;
            system.delete( S, 1, 1 ) ;
            if( S = Value ) then // Exact match
            begin
                Result := I ;
                exit ;
            end ;
        end ;
    end ; // while( List[ I ] = UValue )
end ; // TSymbol_Table.IndexOf
This is a new method for the symbol table class. It returns the index (in the normalized symbol name list) of the specified symbol, with the requested access mode and case-sensitivity. It returns -1 if the normalized name isn't found, or if a matching alias isn't found.

In the next article, we will examine the F$TRNLNM lexical function.

 

Copyright © 2020 by Alan Conroy. This article may be copied in whole or in part as long as this copyright is included.