1 Introduction
2 Ground Rules

Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class

The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up

The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup

Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API

Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O

UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation

UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services

UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN

CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND

Glossary/Index


Downloads

@ and EXIT

As described in the previous article, the @ command is used to start execution of a UCL script. The EXIT command is used to leave the current scope and return to the last scope. Here is the documentation:

@

This executes a UCL script.

Format
@ filespec {/OUTPUT=outfilespec} {parameter{ parameter...}}

Parameters
filespec

File specification of the script to execute. Wildcards (* and ?) are not permitted in the file name. The default file type is ".com".

parameter

Specifies one or more optional parameters. The symbols (P1, P2, etc.) are assigned these values during the execution of the specified script. Each parameter is delimited by one or more spaces. A null parameter can be provided by two consecutive quotes (""). Each parameter can contain any characters desired, consistent with the following rules.
  • If the first parameter starts with a slash, the entire parameter must be surrounded by quotes.
  • If the parameter includes embedded spaces, the parameter must be enclosed in quotes.
  • All alphabetic characters are converted to uppercase. If you wish to preserve lowercase characters, the parameter must be enclosed in quotes.
  • You can enclose quotes within the parameter by using double quotes for each quote.
For instance, the following parameters:
Hello there
will be converted to two parameters as if the following were executed:
P1="HELLO"
P2="THERE"
The following:
"Hello there"
will be converted to a single parameter as if:
P1="Hello there"
The following:
"Hello ""there"""
the value assigned to P1 in this case would be:
Hello "there"

Description

The @ command is used to execute a UCL script. It can be used within a UCL script to execute another script. Each use of @ creates a new scope with local symbols. The maximum number of levels allowed depends upon system quotas.

Qualifiers
/OUTPUT=filespec

Specifies the name of the file to which the script output is written. By default, the output goes to the current SYS$OUTPUT specification. The /OUTPUT qualifier must immediately follow the file specification or else it will be interpreted as a parameter.

Example

$ @MAKE MYAPP


EXIT

Terminates processing of a UCL script and returns control to the calling command level.

Format
EXIT {code}

Parameters
code

An optional numeric code that the reserved global symbol $STATUS is set to. The lower 3 bits of the value are assigned to the $SEVERITY symbol. If no code is specified, the current value of $STATUS is returned.

Description

The EXIT command is used to terminate the execution of a procedure.

Example

$ EXIT

procedure Process_Exit( Code : int64 = -1 ) ;

var E, Saved : int64 ;
    Err, I : integer ;
    Context, S : string ;

begin
    if( Parser <> nil ) then
    begin
        S := trim( Parser.Grab_Line ) ;
        if( S <> '' ) then
        begin
            Parser.Put_Token( S ) ;
            Code := Get_Numeric_Parameter( Err, Context ) ;
        end ;
    end ;
    if( Code <> -1 ) then
    begin
        Set_Status( Code ) ;
    end ;

This routine takes an optional parameter, which is the exit code. This routine can be called in two different circumstances: from within normal command processing and from the Run procedure. In the first case, we have a parser and the exit code may optionally follow, so we grab the line so see if there is anything there. If so, we push the value back and use Get_Next_Parameter to get the exit code, overwriting whatever code was passed to the routine. In any case, if the code is not -1 (indicating no code), we set the $STATUS symbol via the Set_Status routine (covered later in this article).

    if( Contexts.Count > 1 ) then // Nested
    begin
        // Delete the current scope table and make previous table the default...
        if( Contexts.Count = 2 ) then
        begin
            DELLNT( 'lnm$ucl$0', 'lnm$process_directory', 'lnm$process' ) ;
        end else
        begin
            DELLNT( 'lnm$ucl$' + inttostr( Contexts.Count - 1 ), 'lnm$process_directory', 
                'lnm$ucl$' + inttostr( Contexts.Count - 2 ) ) ;
        end ;

        // Delete the context...
        Contexts.Delete( Contexts.Count - 1 ) ;
        _This_UCL_Context.Free ;
        _This_UCL_Context := TUCL_Context( Contexts[ Contexts.Count - 1 ] ) ;
If there is more than one item in the Contexts list, we are currently nested. Thus, we delete the table for the current scope. The name of the table we delete is constructed according to our nesting level, and we change the default table to the previous scope's table. Then we remove the UCL context from the list and free it. Finally, we set the current context to the previous (more outer) context.

        // Restore sys$ states...
        Err := LIB_Set_Symbol( 'sys$command', This_UCL_Context.syscommand_name ) ;
        if( Err <> 0 ) then
        begin
            E := LIB_Get_Exception( 0 ) ; // Get handle
            Set_Exception( LIB_Get_Exception_Text( 0, E ) ) ;
        end ;
        Err := LIB_Set_Symbol( 'sys$output', This_UCL_Context.sysoutput_name ) ;
        if( Err <> 0 ) then
        begin
            E := LIB_Get_Exception( 0 ) ; // Get handle
            Set_Exception( LIB_Get_Exception_Text( 0, E ) ) ;
        end ;
        Err := LIB_Set_Symbol( 'sys$input', This_UCL_Context.sysinput_name ) ;
        if( Err <> 0 ) then
        begin
            E := LIB_Get_Exception( 0 ) ; // Get handle
            Set_Exception( LIB_Get_Exception_Text( 0, E ) ) ;
        end ;
        Err := LIB_Set_Symbol( 'sys$error', This_UCL_Context.syserror_name ) ;
        if( Err <> 0 ) then
        begin
            E := LIB_Get_Exception( 0 ) ; // Get handle
            Set_Exception( LIB_Get_Exception_Text( 0, E ) ) ;
        end ;
Now we restore the state of the various SYS$ symbols. If setting any of the symbols causes an error, we set the error. Notice we don't exit if there was a problem - we need to do our best to restore the scope.

        if( pos( '\', This_UCL_Context.sysinput_name ) > 0 ) then // file
        begin
            Saved := This_UCL_Context.sysinput_line ;
            for I := 1 to This_UCL_Context.sysinput_line do
            begin
                Get_Input( '' ) ; // Include Get_Input in next article
            end ;
            This_UCL_Context.sysinput_line := Saved ;
        end ;
        if( pos( '\', This_UCL_Context.syscommand_name ) > 0 ) then // file
        begin
            Saved := This_UCL_Context.syscommand_line ;
            for I := 1 to This_UCL_Context.syscommand_line do
            begin
                Get_Command( '' ) ;
            end ;
            This_UCL_Context.syscommand_line := Saved ;
        end ;
    end ; // if( Contexts.Count > 1 )
At this point, we have the previous scope mostly restored. But if the sys$input value is a file, we need to reposition the file to the line after the last line that we processed. We repeat the same process for sys$output.

    S := Get_Symbol_Value( 'lnm$job', '$STATUS' ) ;
    if( S = '' ) then
    begin
        Code := 0 ;
    end else
    begin
        Code := strtoint( S ) ;
    end ;
    Set_Exception( Code ) ;
    Handle_Exception ;
end ; // Process_Exit
Finally, we get the current value of $STATUS. If it is defined, non-blank, and non-zero, we set the exception code and handle any exceptions. This essentially passes any exceptions that happened in the called scope to be propogated to the current scope.

function Get_Input( const Prefix : string ) : string ;

var IOSB : TIOSB ;

begin
    SYS_QIOW( 0, RH_SysCommand, IO_SETMODE or IOM_CLI_CTRLCAST, integer( @IOSB ), integer( @CC_AST ), 
        0, 0, 0, 0, 0,  0, 0 ) ;
    SYS_QIOW( 0, RH_SysCommand, IO_SETMODE or IOM_CLI_CTRLYAST, integer( @IOSB ), integer( @CY_AST ), 
        0, 0, 0, 0, 0, 0, 0 ) ;
    Result := PasStarlet.LIB_Get_Input( Prefix ) ;
    inc( This_UCL_Context.sysinput_line ) ;
end ;
This mirrors the Get_Command procedure that we've covered in the past. We will discuss its use in the future. Essentially it is what is used when we want user data input rather than user command input.

function Set_Status( I : int64 ) : int64 ;

begin
    Result := LIB_Set_Symbol( '$STATUS', inttostr( I ), LNM_JOB ) ;
    if( Result = 0 ) then
    begin
        Result := LIB_Set_Symbol( '$SEVERITY', inttostr( I and 3 ), LNM_JOB ) ;
    end ;
end ;
This routine is used to set the $STATUS symbol. The low 3 bits of each UOS/VMS error code indicates the severity of the error, so we set the severity from the lowest three bits.

We've made one other change to support the EXIT command in the SSC's Set_Symbol method.

    // Handle special symbols...
    if( PID <> 0 ) then
    begin
        N := lowercase( N ) ;
        if( N = 'sys$command' ) then
        begin
            UE := FiP.Assign( PID, 'sys$command:', RH_SysCommand, 0, '', 0 ) ;
            if( UE <> nil ) then
            begin
                Set_Exception( UE ) ;
                exit ;
            end ;
        end ;
        if( N = 'sys$error' ) then
        begin
            UE := FiP.Assign( PID, 'sys$error:', RH_SysError, 0, '', 0 ) ;
            if( UE <> nil ) then
            begin
                Set_Exception( UE ) ;
                exit ;
            end ;
        end ;
        if( N = 'sys$input' ) then
        begin
            UE := FiP.Assign( PID, 'sys$input:', RH_SysInput, 0, '', 0 ) ;
            if( UE <> nil ) then
            begin
                Set_Exception( UE ) ;
                exit ;
            end ;
        end ;
        if( N = 'sys$output' ) then
        begin
            UE := FiP.Assign( PID, 'sys$output:', RH_SysOutput, 0, '', 0 ) ;
            if( UE <> nil ) then
            begin
                Set_Exception( UE ) ;
                exit ;
            end ;
        end ;
    end ; // if( PID <> 0 )
If called by a process (PID is non-zero), we handle special symbols. If any of these four special symbols is being set, we call the FiP's Assign method to associate the symbol value with the corresponding redirection handle. If the assignment results in an error, we exit - the symbol value will have changed, but the redirection handle will still refer to the previously assigned target.

In the next article, we will look at the CRELNT system service.

 

Copyright © 2021 by Alan Conroy. This article may be copied in whole or in part as long as this copyright is included.