1 Introduction
2 Ground Rules
Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class
The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up
The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup
Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API
Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O
UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation
UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services
UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN
CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND
Glossary/Index
Downloads
|
Quotas and I/O
One last subject to discuss before moving on from this series of articles on I/O
is that of quotas. We discussed the concept of quotas back in article 42.
Now it is time to implement some of those quotas. Of concern right now
are BIOLM (buffered I/O limit) and BYTLM (byte limit) - all of the I/O we've
addressed so far qualifies as buffered I/O. The proper place to handle these
quotas is in the Read_File and Write_File methods of the File Processor. Here
is the updated Read_File method:
function TUOS_FiP.Read_File( Handle : THandle ; Stream : longint ;
Length : int64 ; Flags : integer ; var IOSB : TIOSB ) : string ;
var Resource : TResource ;
begin
// Setup...
Set_Last_Error( nil ) ;
Result := '' ;
Resource := TResource( Handle ) ;
setlength( Result, Length ) ;
if( USC.Check_Quota( Kernel.PID, Quota_BIOLM, 1 ) ) then
begin
Set_Last_Error( Create_Error( UOSErr_Quota_Exceeded ) ) ;
exit ;
end ;
IOSB.r_io_64.r_bcnt_32.l_bcnt := Resource._File.Read( Stream, Resource.Position, Length, PAnsiChar( Result )[ 0 ], Flags ) ;
setlength( Result, IOSB.r_io_64.r_bcnt_32.l_bcnt ) ;
if( USC.Check_Quota( Kernel.PID, Quota_BYTLM, IOSB.r_io_64.r_bcnt_32.l_bcnt ) ) then
begin
Set_Last_Error( Create_Error( UOSErr_Quota_Exceeded ) ) ;
end ;
end ;
We've added two if statements that call the USC's Check_Quota method. The first
one passed Quota_BIOLM with a value of 1. We will discuss Check_Quota below, but
essentially we are telling the USC that we're doing one more buffered I/O
operation. If the method returns true, then we've exceeded that quota and we
will set an exception and exit.
The second if statement calls Check_Quota to tell the USC that we have read in a
certain number of bytes. Again, a true result from that method means we've exceeded
a quota and we set the exception.
function TUOS_FiP.Write_File( Handle : THandle ; Stream : longint ;
Buff : PAnsiChar ; Length : int64 ; Flags : integer ) : TUnified_Exception ;
var Len : TStore_Size64 ;
Resource : TResource ;
Written : cardinal ;
begin
Set_Last_Error( nil ) ;
Handle := USC.Translate_Handle( Kernel.PID, Handle ) ;
if( not USC.Valid_Handle( Kernel.PID, Handle ) ) then
begin
Result := Set_Last_Error( Create_Error( UOSErr_Invalid_Handle ) ) ;
exit ;
end ;
if( USC.Check_Quota( Kernel.PID, Quota_BIOLM, 1 ) ) then
begin
Result := Set_Last_Error( Create_Error( UOSErr_Quota_Exceeded ) ) ;
exit ;
end ;
Resource := TResource( Handle ) ;
Len := Resource._File.Write( Stream, Resource.Position, Length, Buff[ 0 ] ) ;
Result := Resource._File.Last_Error ;
if( Resource._File.Is_Store ) then
begin
Resource.Position := Resource.Position + Len ;
end ;
if( USC.Check_Quota( Kernel.PID, Quota_BYTLM, Written ) ) then
begin
Result := Set_Last_Error( Create_Error( UOSErr_Quota_Exceeded ) ) ;
end ;
end ;
The changes to the Write_File method are exactly the same as for the Read_File
method. First we check the buffered I/O limit and then we check the byte limit.
Again, we set an exception if we exceeded a quota. I should note here that the
file Write method returns the number of bytes processed. For stores, this will
be the same as the number of bytes actually written. However, in the case of a
terminal, the number of characters processed is not the same number that are
written (such as if Control O was used to turn off output). Because of this new
difference, we've added another var parameter to our file Write methods so that
the number of characters actually written can be returned.
Perhaps you may have considered that we're only reporting the number of
characters sent to the Write_File or retrieved from the Read_File method. This
doesn't include any flow-control characters that occurred during the operation.
This is intentional - we don't want to charge flow control to the user's quota
any more than we'd apply a quota to hardware flow control. But, then what about
echoing characters? The incoming character would count as 1 and the outgoing
echo would count as 1 (or more), but since the echo bypasses the Write_File
method and goes directly to the terminal, we'd only count the one character that
was input. This too is intentional - UOS will not charge echoed characters
against the byte limit. And then there are the asynchronous characters such as
control-T, Control-O, etc. Those don't count as input (unless the terminal is
in binary mode), so they aren't charged against the quota. This too, is as we
plan. Control-T results in a line of status that is charged against the
quota, so the one-character uncharged input results in 70 or 80 charged output.
Thus, not counting the Control T has miniscule effect - even if the user is typing
it over and over. With Control-O, we won't charge that against the quota because
we want to encourage people to discard unnecessary output if they don't need it.
The other few cases are such minor overhead that there is no need to charge them
either.
Now let's take a look at the Check_Quota method. But first, let's look at the
constants that method uses:
// Quotas ...
const Quota_ASTLM = 1 ; // Async I/Os
const Quota_BIOLM = 2 ; // Buffered I/Os
const Quota_BYTLM = 3 ; // Buffered I/O bytes
const Quota_CPUTIM = 4 ; // CPU seconds per session
const Quota_DIOLM = 5 ; // Raw I/Os
const Quota_ENQLM = 6 ; // Lock queue
const Quota_FILLM = 7 ; // Open files
const Quota_MAXACCTJOBS = 8 ; // Max batch jobs
const Quota_MAXJOBS = 9 ; // Max jobs
const Quota_PGFLQUOTA = 10 ; // Max pages in page file
const Quota_TQELM = 11 ;
const Quota_WSEXTENT = 12 ; // Max Working Set size
const Quota_PRCLM = 13 ; // Subprocess limit
const Quota_THREADLM = 14 ; // Thread limit
These constants provide a means of referring to a specific quota.
function TUSC.Check_Quota( PID : TPID ; Index : integer ;
Value : int64 ) : boolean ;
var Process : TProcess ;
begin
Process := Get_Process( PID ) ;
Result := Process.Check_Quota( Index, Value ) ;
end ;
This method simply obtains the process instance and passes the check on to the
Check_Quota method of the TProcess.
function TProcess.Check_Quota( Index : integer ;
Value : int64 ) : boolean ;
var User : TUser ;
begin
Result := False ;
User := Get_User( _User ) ;
case Index of
Quota_ASTLM :
begin
Usage.ASTLM := Usage.ASTLM + Value ;
if( User <> nil ) then
begin
User.Usage.ASTLM := User.Usage.ASTLM + Value ;
if( User.Quotas.ASTLM > 0 ) then
begin
Result := ( Usage.ASTLM > User.Quotas.ASTLM ) ;
end ;
end ;
end ;
First we get the user associated with the process, since that is where the quotas
reside (they are set per user, although most of them apply to each process). Then
we base our processing on the specified quota. The first case is for the ASTLM
quota. Step 1 is to add the passed value to the process' ASTLM usage variable.
If the user is not nil, we also add the value to the user's ASTLM usage variable.
Note that it would be unusual for a process to not have an associated user, but
there are times where that is true that we will discuss in a future article
(usually related to the login process before the user has successfully logged
in). In such a case, we still want to keep track of the usage, even if there is
no user whose quota we can validate against. If there is a user, we then check
our current usage value against the user's quota for ASTLM. If the quota is 0,
that means there is no limit. Otherwise if the usage exceeds the quota, we
return true.
Quota_BIOLM :
begin
Usage.BIOLM := Usage.BIOLM + Value ;
if( User <> nil ) then
begin
User.Usage.BIOLM := User.Usage.BIOLM + Value ;
if( User.Quotas.BIOLM > 0 ) then
begin
Result := ( Usage.BIOLM > User.Quotas.BIOLM ) ;
end ;
end ;
end ;
Quota_BYTLM :
begin
Usage.BYTLM := Usage.BYTLM + Value ;
if( User <> nil ) then
begin
User.Usage.BYTLM := User.Usage.BYTLM + Value ;
if( User.Quotas.BYTLM > 0 ) then
begin
Result := ( Usage.BYTLM > User.Quotas.BYTLM ) ;
end ;
end ;
end ;
Quota_CPUTIM :
begin
Usage.CPUTIM := Usage.CPUTIM + Value ;
if( User <> nil ) then
begin
User.Usage.CPUTIM := User.Usage.CPUTIM + Value ;
if( User.Quotas.CPUTIM > 0 ) then
begin
Result := ( Usage.CPUTIM > User.Quotas.CPUTIM ) ;
end ;
end ;
end ;
Quota_DIOLM :
begin
Usage.DIOLM := Usage.DIOLM + Value ;
if( User <> nil ) then
begin
User.Usage.DIOLM := User.Usage.DIOLM + Value ;
if( User.Quotas.DIOLM > 0 ) then
begin
Result := ( Usage.DIOLM > User.Quotas.DIOLM ) ;
end ;
end ;
end ;
Quota_ENQLM :
begin
Usage.ENQLM := Usage.ENQLM + Value ;
if( User <> nil ) then
begin
User.Usage.ENQLM := User.Usage.ENQLM + Value ;
if( User.Quotas.ENQLM > 0 ) then
begin
Result := ( Usage.ENQLM > User.Quotas.ENQLM ) ;
end ;
end ;
end ;
Quota_FILLM :
begin
Usage.FILLM := Usage.FILLM + Value ;
if( User <> nil ) then
begin
User.Usage.FILLM := User.Usage.FILLM + Value ;
if( User.Quotas.FILLM > 0 ) then
begin
Result := ( Usage.FILLM > User.Quotas.FILLM ) ;
end ;
end ;
end ;
Quota_MAXACCTJOBS :
begin
if( User <> nil ) then
begin
User.Usage.MAXACCTJOBS := User.Usage.MAXACCTJOBS + Value ;
if( User.Quotas.MAXACCTJOBS > 0 ) then
begin
Result := ( User.Usage.MAXACCTJOBS > User.Quotas.MAXACCTJOBS ) ;
end ;
end ;
end ;
Quota_MAXJOBS :
begin
if( User <> nil ) then
begin
User.Usage.MAXJOBS := User.Usage.MAXJOBS + Value ;
if( User.Quotas.MAXJOBS > 0 ) then
begin
Result := ( User.Usage.MAXJOBS > User.Quotas.MAXJOBS ) ;
end ;
end ;
end ;
Quota_PGFLQUOTA :
begin
Usage.PGFLQUOTA := Usage.PGFLQUOTA + Value ;
if( User <> nil ) then
begin
User.Usage.PGFLQUOTA := User.Usage.PGFLQUOTA + Value ;
if( User.Quotas.PGFLQUOTA > 0 ) then
begin
Result := ( Usage.PGFLQUOTA > User.Quotas.PGFLQUOTA ) ;
end ;
end ;
end ;
Quota_TQELM :
begin
Usage.TQELM := Usage.TQELM + Value ;
if( User <> nil ) then
begin
User.Usage.TQELM := User.Usage.TQELM + Value ;
if( User.Quotas.TQELM > 0 ) then
begin
Result := ( Usage.TQELM > User.Quotas.TQELM ) ;
end ;
end ;
end ;
Quota_WSEXTENT :
begin
Usage.WSEXTENT := Usage.WSEXTENT + Value ;
if( User <> nil ) then
begin
User.Usage.WSEXTENT := User.Usage.WSEXTENT + Value ;
if( User.Quotas.WSEXTENT > 0 ) then
begin
Result := ( Usage.WSEXTENT > User.Quotas.WSEXTENT ) ;
end ;
end ;
end ;
Quota_PRCLM :
begin
Usage.PRCLM := Usage.PRCLM + Value ;
if( User <> nil ) then
begin
User.Usage.PRCLM := User.Usage.PRCLM + Value ;
if( User.Quotas.PRCLM > 0 ) then
begin
Result := ( Usage.PRCLM > User.Quotas.PRCLM ) ;
end ;
end ;
end ;
Quota_THREADLM :
begin
Usage.THREADLM := Usage.THREADLM + Value ;
if( User <> nil ) then
begin
User.Usage.THREADLM := User.Usage.THREADLM + Value ;
if( User.Quotas.THREADLM > 0 ) then
begin
Result := ( Usage.THREADLM > User.Quotas.THREADLM ) ;
end ;
end ;
end ;
end ; // case Index
end ; // TProcess.Check_Quota
The remaining quotas are handled in the same manner, except for MAXJOBS and
MAXACCTJOBS. Those quotas are not process-specific - they are limits across all
processes for a given user. Therefore, the quota check is against User.Usage
instead of the process Usage.
In the next set of articles, we will dive into the UCL.
Copyright © 2018 by Alan Conroy. This article may be copied
in whole or in part as long as this copyright is included.
|