1 Introduction
2 Ground Rules
Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class
The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up
The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup
Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API
Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O
UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation
UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services
UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN
CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND
Glossary/Index
Downloads
|
LIB_FAO and LIB_FAOL, part 2
In the previous article, we introduced the FAO service. In this article, we will
examine the code that implements FAO for UOS.
function SYS_FAO( ctrstr, OutLen, OutBuf : int64 ; P1 : int64 = 0 ;
P2 : int64 = 0 ; P3 : int64 = 0 ; P4 : int64 = 0 ; P5 : int64 = 0 ;
P6 : int64 = 0 ; P7 : int64 = 0 ; P8 : int64 = 0 ; P9 : int64 = 0 ;
P10 : int64 = 0 ; P11 : int64 = 0 ; P12 : int64 = 0 ; P13 : int64 = 0 ;
P14 : int64 = 0 ; P15 : int64 = 0 ; P16 : int64 = 0 ; P17 : int64 = 0 ) : int64 ;
begin
Result := LIB_FAO( ctrstr, OutLen, OutBuf, P1, P2, P3, P4, P5, P6, P7, P8, P9,
P10, P11, P12, P13, P14, P15, P16, P17 ) ;
end ;
function SYS_FAOL( ctrstr, OutLen, OutBuf, List : int64 ) : int64 ;
begin
Result := LIB_FAOL( ctrstr, OutLen, OutBuf, List ) ;
end ;
As mentioned in the last article, the SYS unit simply redirects the FAO and FAOL
system calls to starlet.
function LIB_FAO( ctrstr, OutLen, OutBuf : int64 ; P1 : int64 = 0 ;
P2 : int64 = 0 ; P3 : int64 = 0 ; P4 : int64 = 0 ; P5 : int64 = 0 ;
P6 : int64 = 0 ; P7 : int64 = 0 ; P8 : int64 = 0 ; P9 : int64 = 0 ;
P10 : int64 = 0 ; P11 : int64 = 0 ; P12 : int64 = 0 ; P13 : int64 = 0 ;
P14 : int64 = 0 ; P15 : int64 = 0 ; P16 : int64 = 0 ; P17 : int64 = 0 ) : int64 ;
var Parameters : array[ 1..17 ] of int64 ;
begin
Parameters[ 1 ] := P1 ;
Parameters[ 2 ] := P2 ;
Parameters[ 3 ] := P3 ;
Parameters[ 4 ] := P4 ;
Parameters[ 5 ] := P5 ;
Parameters[ 6 ] := P6 ;
Parameters[ 7 ] := P7 ;
Parameters[ 8 ] := P8 ;
Parameters[ 9 ] := P9 ;
Parameters[ 10 ] := P10 ;
Parameters[ 11 ] := P11 ;
Parameters[ 12 ] := P12 ;
Parameters[ 13 ] := P13 ;
Parameters[ 14 ] := P14 ;
Parameters[ 15 ] := P15 ;
Parameters[ 16 ] := P16 ;
Parameters[ 17 ] := P17 ;
Result := FAO( ctrstr, OutLen, OutBuf, int64( @Parameters ), True ) ;
end ;
LIB_FAO simply creates a 17-entry array and passes it and the other parameters to
FAO, which is described below. It also passes True for the last parameter, meaning
that there are no more than 17 parameters being passed.
function LIB_FAOL( ctrstr, OutLen, OutBuf, List : int64 ) : int64 ;
begin
Result := FAO( ctrstr, OutLen, OutBuf, List, False ) ;
end ;
LIB_FAO simply calls FAO passing the parameters. But it also passes False as the
last parameter, which indicates that we have no idea how many parameters are actually
being passed.
function FAO( ctrstr, OutLen, OutBuf, Parameters : int64 ; Limit : boolean ) : int64 ;
var Control : string ;
SRB : TSRB ;
begin
Result := 0 ;
if( OutBuf = 0 ) then
begin
exit ;
end ;
if( ctrstr = 0 ) then // No control string
begin
if( OutLen <> 0 ) then
begin
Pint64( OutLen )^ := 0 ;
end ;
exit ;
end ;
move( PChar( ctrstr )[ 0 ], SRB, sizeof( SRB ) ) ;
if( ( SRB.Buffer = 0 ) or ( SRB.Length = 0 ) ) then // No control string
begin
if( OutLen <> 0 ) then
begin
Pint64( OutLen )^ := 0 ;
end ;
exit ;
end ;
The first thing we do is validate the output buffer and length and exit if there is
no need to continue.
Control := _FAO_( Get_String( SRB ), Parameters, Result, Limit ) ;
if( length( Control ) > Pint64( OutLen )^ ) then
begin
setlength( Control, PInt64( OutLen )^ ) ;
end ;
move( PChar( Control )[ 0 ], PChar( OutBuf )[ 0 ], length( Control ) ) ;
if( OutLen <> 0 ) then
begin
Pint64( OutLen )^ := length( Control ) ;
end ;
end ;
Next we call the _FAO_ function, getting the control string in
the process. Upon return, we update the output buffer and length. Note that we
truncate the output if it is longer than the length of the receiving buffer.
const Conditional_State_None = 0 ; // Not in a conditional
Conditional_State_If = 1 ; // In the portion of the conditional being processed
Conditional_State_Else = 2 ; // Waiting for else portion of conditional
Conditional_State_End = 3 ; // Waiting for end of conditional
function _FAO_( Control : string ; var Parameters : int64 ; var Res : int64 ;
Limit : boolean ; Nest : integer = 0 ) : string ;
var Parameter_Pointer : int64 ;
Max_Parameter_Pointer : uint64 ;
var Last_Number : int64 ;
type TFAO = record
Count : integer ;
Width : integer ;
Default_Width : integer ;
Source_Size : integer ;
Indirect : boolean ;
Truncate_Right : boolean ; // False = truncate left
Fill : char ; // Fill value
Excess_Fill : char ; // Fill when Width > Default_Width
Directive : string ;
end ;
var _FAO : TFAO ;
var A : int64 ;
Directive : string ;
I, Loop : integer ;
Conditional_State : integer ;
Left_Justify : boolean ;
S : string ;
SRB : TSRB ;
begin
// Setup...
Res := 0 ;
Parameter_Pointer := Parameters ;
if( Limit ) then
begin
Max_Parameter_Pointer := Parameters + 17 * sizeof( int64 ) ;
end else
begin
Max_Parameter_Pointer := $7FFFFFFFFFFFFFFF ;
end ;
Conditional_State := Conditional_State_None // Not in a conditional
Besides the normal variables, we have one that is of type TFAO, which contains the
information on the current directive being processed. The routine starts by setting
the current Parameter_Pointer to the passed Parameters pointer. If the Limit flag
was passed, we set the Max_Parameter_Pointer to the current pointer plus seventeen
elements. Otherwise we set it to the max possible address.
// Process string...
I := 1 ;
while( I <= length( Control ) ) do
begin
Left_Justify := False ;
if( Control[ I ] = '!' ) then
begin
if( copy( Control, I + 1, 1 ) = '!' ) then // !! construct
begin
if( Conditional_State < 2 ) then
begin
Result := Result + '!' ;
I := I + 2 ;
end ;
continue ;
end ;
if( copy( Control, I + 1, 1 ) = '/' ) then // !/ construct
begin
if( Conditional_State < 2 ) then
begin
Result := Result + CRLF ;
I := I + 2 ;
end ;
continue ;
end ;
if( copy( Control, I + 1, 1 ) = '_' ) then // !_ construct
begin
if( Conditional_State < 2 ) then
begin
Result := Result + HT ;
I := I + 2 ;
end ;
continue ;
end ;
if( copy( Control, I + 1, 1 ) = '^' ) then // !^ construct
begin
if( Conditional_State < 2 ) then
begin
Result := Result + FF ;
I := I + 2 ;
end ;
continue ;
end ;
if( copy( Control, I + 1, 1 ) = '-' ) then // !- construct
begin
if( Conditional_State < 2 ) then
begin
Parameter_Pointer := Parameter_Pointer - sizeof( int64 ) ;
I := I + 2 ;
end ;
continue ;
end ;
if( copy( Control, I + 1, 1 ) = '+' ) then // !+ construct
begin
if( Conditional_State < 2 ) then
begin
Parameter_Pointer := Parameter_Pointer + sizeof( int64 ) ;
I := I + 2 ;
end ;
continue ;
end ;
if( copy( Control, I + 1, 1 ) = '>' ) then // !> construct
begin
if( Conditional_State < 2 ) then
begin
if( Nest > 0 ) then
begin
exit ;
end ;
I := I + 2 ;
end ;
continue ;
end ;
The I variable serves as our index into the control string. We set it to the first
character and then loop until our index reaches the end of the string. As we loop,
the first thing we do is clear the Left_Justify flag. Then we check for an exclamation
point, indicating a possible directive. We check for the special cases. If found,
we insert the appropriate value into the output, then adjust the index
value and continue to the next iteration of the loop.
Parse_Directive( I ) ;
if( ( Nest > 0 ) and ( Conditional_State < 2 ) ) then
begin
_FAO.Fill := ' ' ;
_FAO.Truncate_Right := False ;
end ;
Next we call the Parse_Directive procedure to parse the next directive. If we are
nested (inside a !n< !> directive pair), and within a conditional, we set the
fill to space and the Truncate_Right to left-fill. Conditional_State indicates
if we're in a conditional and where within it we are. Note that Parse_Directive
advances the index past the directive.
if( _FAO.Directive = '%C' ) then
begin
if( Last_Number = _FAO.Width ) then
begin
Conditional_State := Conditional_State_If ; // In conditional
end else
begin
Conditional_State := Conditional_State_Else ; // Look for else
end ;
continue ;
end else
if( _FAO.Directive = '%E' ) then
begin
if( Conditional_State = Conditional_State_Else ) then // Looking for else
begin
Conditional_State := Conditional_State_If ; // In the conditional now
end else
begin
Conditional_State := Conditional_State_End ; // Skip to finish
end ;
continue ;
end else
if( _FAO.Directive = '%F' ) then // Completed the conditional
begin
Conditional_State := Conditional_State_None ;
continue ;
end ;
if( Conditional_State > Conditional_State_If ) then
begin
continue ;
end ;
If the directive is a conditional (!%C), we need to see if the conditional value is
equal to the last number. Because of the way directives are parsed, the conditional
value is parsed as the directive width. So we compare the last number with the
"width". If it is equal, we set the conditional state to Conditional_State_If ,
which means we want to process everything up to the !%E or !%F directive. If the
conditional value is not equal, we set the state to Conditional_State_Else to
skip everything until the !%E or !%F directive.
If the directive is the else (!%E), then if we're in the processing state, we change
the state to Conditional_State_End to skip until the !%F directive. If we
are in the state to wait until the else, we set the state to Conditional_State_If
to process the following text.
If the directive is the end of the conditional (!%F), we are done with the conditional and set the
state to Conditional_State_None . Note that an extra !%F directive will
simply be ignored.
Once we're done with any potential conditional directives, we see if we are awaiting
an else or end directive. If so, we skip to the next position in context.
while( _FAO.Count > 0 ) do
begin
dec( _FAO.Count ) ;
S := '' ;
if( _FAO.Directive = '%U' ) then
begin
_FAO.Directive := 'UL' ;
end ;
if( _FAO.Directive = '<' ) then
begin
S := Ending_Nest_Directive( I ) ;
S := _FAO_( S, Parameter_Pointer, Res, Limit, Nest + 1 ) ;
Left_Justify := True ;
end else
We now loop for as many times as the directive had a count. First thing we do in
the loop, we decrement the count. As mentioned in the last article, the %U directive
is converted to a !UL directive. S is set to the value to insert into the output string
at the end of the loop.
If the directive is !n<, we look for the !> directive and grab that portion of the
control string. We advanced the index to that point and then recursively call _FAO_
with the substring, passing the current nest value, plus one, so that the routine knows
that it is nested.
if( copy( _FAO.Directive, 1, 1 ) = '*' ) then
begin
S := copy( _FAO.Directive, 2, 1 ) ;
if( S = '' ) then
begin
S := ' ' ;
end ;
S := Repeating_String( S[ 1 ], _FAO.Width ) ;
end else
if( _FAO.Directive = '%D' ) then // System Date/Time
begin
S := ASCTIM( Get_Item( _FAO.Indirect ), 1 ) ;
end else
if( _FAO.Directive = '%I' ) then // Identifier for UIC
begin
S := GETNAME( Get_Item( _FAO.Indirect ) ) ;
end else
In the case of the !n* directive, we create a repeated string of the specified character.
Note that, again, the count is parsed as a width. In the case of !%D, we get the
time string. For !%I, we get the name associated with the UIC. Get_Item returns
the next parameter value. We'll cover it later in the article.
if( _FAO.Directive = '%S' ) then
begin
if( Last_Number = 1 ) then
begin
if( pos( copy( Result, length( Result ), 1 ), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' ) > 0 ) then
begin
S := 'S' ;
end else
begin
S := 's' ;
end ;
end ;
end else
In the case of !%S, we check to see if the last number is 1. If so, we look at the
previous character. If it was an uppercase letter, we insert "S", otherwise we
insert "s".
if( _FAO.Directive = '%T' ) then // System Time
begin
S := ASCTIM( Get_Item( _FAO.Indirect ) ) ;
end else
if( _FAO.Directive = 'AC' ) then
begin
S := Get_Counted_String ;
end else
if( _FAO.Directive = 'AD' ) then
begin
S := Get_String_From_Address ;
end else
if( _FAO.Directive = 'AF' ) then
begin
S := Get_String_From_Address ;
for Loop := 1 to length( S ) do
begin
if( S[ Loop ] < ' ' ) then
begin
S[ Loop ] := '.' ;
end ;
end ;
end else
We'll look at the functions being called in a bit. Of particular interest here is
the processing of the !AF directive. We get the string via the Get_String_From_Address
function. Then we iterate through the characters, replacing anything less than ASCII
value 32 with a period (.).
if( _FAO.Directive = 'AB' ) then
begin
S := Get_String( PSRB( Get_Item( False ) )^ ) ;
end else
if( _FAO.Directive = 'AS' ) then
begin
S := Get_ASCID ;
end else
if( _FAO.Directive = 'AZ' ) then
begin
S := Get_ASCIZ ;
end else
if( copy( _FAO.Directive, 1, 1 ) = 'B' ) then
begin
S := Get_Binary( _FAO.Source_Size, _FAO.Indirect ) ;
end else
if( copy( _FAO.Directive, 1, 1 ) = 'O' ) then
begin
S := Get_Octal( _FAO.Source_Size, _FAO.Indirect ) ;
end else
if( copy( _FAO.Directive, 1, 1 ) = 'X' ) then
begin
S := Get_Hex( _FAO.Source_Size, _FAO.Indirect ) ;
end else
if( ( copy( _FAO.Directive, 1, 1 ) = 'Z' ) or
( copy( _FAO.Directive, 1, 1 ) = 'U' ) or
( copy( _FAO.Directive, 1, 1 ) = 'S' ) ) then
begin
S := Get_Decimal( _FAO.Source_Size, _FAO.Indirect, copy( _FAO.Directive, 1, 1 ) = 'S' ) ;
if( ( _FAO.Width > 0 ) and ( length( S ) > _FAO.Width ) ) then
begin
S := Repeating_String( '*', _FAO.Width ) ;
end ;
end else
begin
S := '' ;
end ;
This code processes the remainder of the directives. For the various decimal integer
values, we get the value. If the width was specified and the number takes more space
than that, we set the result to a number of asterisks equal to the directive width. If
we don't recognize the directive, we set the result to null.
while( length( S ) < _FAO.Default_Width ) do
begin
if( ( Nest > 0 ) or Left_Justify ) then
begin
S := S + _FAO.Fill ;
end else
begin
S := _FAO.Fill + S ;
end ;
end ;
Once we've processed the directives, S contains the string to insert. If the length
of the string is less than the default width, we pad it with the fill character.
Depending upon the Left_Justify value we decide whether to pad on the left
or the right. If we are nested within a !n< and !>, we also pad on the left.
if( ( length( S ) > _FAO.Width ) and ( _FAO.Width > 0 ) ) then
begin
if( _FAO.Truncate_Right ) then
begin
setlength( S, _FAO.Width ) ;
end else
begin
delete( S, 1, length( S ) - _FAO.Width ) ;
end ;
end ;
If the length of the result is wider than the explicitly-specified width, we truncate it.
_FAO.Truncate_Right determines if we truncate on the left or right.
while( length( S ) < _FAO.Width ) do
begin
if( _FAO.Truncate_Right or Left_Justify ) then
begin
S := S + ' ' ;
end else
begin
S := _FAO.Excess_Fill + S ;
end ;
end ; // while( length( S ) < _FAO.Width )
Result := Result + S ;
end ; // while( _FAO.Count > 0 ) do
Finally, if the length of the result is less than the explicit width, we pad it
on the appropriate side. Then we add the adjusted value to the output.
end else
begin
if( Conditional_State < Conditional_State_Else ) then
begin
Result := Result + Control[ I ] ;
end ;
inc( I ) ;
end ;
end ; // while( I <= length( Control ) )
end ; // _FAO_
If we aren't processing a directive, we add the character to the output buffer. But
only if we aren't in a conditional state waiting for the else or ending.
Then we increment the index and loop back. When we reach the end of the control
string, we drop out of the loop with Result being the final output.
function Get_Item( Indirect : boolean ) : int64 ;
begin
Result := 0 ;
if( ( Parameters <> 0 ) and ( Parameters <= Max_Parameter_Pointer ) ) then
begin
Result := pint64( Parameter_Pointer )^ ;
if( Indirect ) then
begin
Result := pint64( Result )^ ;
end ;
Parameter_Pointer := Parameter_Pointer + sizeof( int64 ) ;
end ;
end ;
This local function obtains the next parameter. It pulls from the parameter array
and returns the value. If Indirect is true, we use the parameter as
an address. In either case, we return the value. However, if the current parameter
address is after the max pointer, that means we've run out of parameters (if called
via FAO rather than FAOL). If we get a parameter, we increment the pointer to the
next parameter.
function Get_Counted_String : string ;
var L : byte ;
P : int64 ;
begin
Result := '' ;
P := Get_Item( False ) ;
if( P <> 0 ) then
begin
L := pbyte( P )^ ;
setlength( Result, L ) ;
move( PChar( P )[ 1 ], pchar( Result )[ 0 ], L ) ;
end ;
end ;
function Get_String_From_Address : string ;
var L, S : int64 ;
begin
Result := '' ;
L := Get_Item( False ) ;
S := Get_Item( False ) ;
if( ( L <> 0 ) and ( S <> 0 ) ) then
begin
setlength( Result, L ) ;
move( pchar( S )[ 0 ], pchar( Result )[ 0 ], L ) ;
end ;
end ;
function Get_ASCID : string ;
var Descriptor : TDescriptor ;
P : int64 ;
begin
Result := '' ;
P := Get_Item( False ) ;
if( P <> 0 ) then
begin
move( PChar( P )[ 0 ], Descriptor, sizeof( Descriptor ) ) ;
if( ( Descriptor.Length > 0 ) and ( Descriptor.Address <> 0 ) ) then
begin
setlength( Result, Descriptor.Length ) ;
move( PChar( Descriptor.Address )[ 0 ], PChar( Result )[ 0 ], length( Result ) ) ;
end ;
end ;
end ;
function Get_ASCIZ : string ;
var P : int64 ;
begin
Result := '' ;
P := Get_Item( False ) ;
if( P <> 0 ) then
begin
Result := PChar( P ) ;
end ;
end ;
These local functions obtain different species of strings. The counted strings
are those whose first byte contains the number of following bytes in the string.
The ASCID string uses a string descriptor. ASCIZ are null-terminated strings.
The remaining strings consist of two parameter values: the length and the pointer to the
string text.
function Get_Binary( Size : integer ; Indirect : boolean ) : string ;
var P : int64 ;
begin
P := Get_Item( Indirect ) ;
Last_Number := 0 ;
move( P, Last_Number, Size ) ;
Result := CVTB( 10, 2, inttostr( Last_Number ) ) ;
end ;
function Get_Octal( Size : integer ; Indirect : boolean ) : string ;
var P : int64 ;
begin
P := Get_Item( Indirect ) ;
Last_Number := 0 ;
move( P, Last_Number, Size ) ;
Result := CVTB( 10, 8, inttostr( Last_Number ) ) ;
end ;
function Get_Hex( Size : integer ; Indirect : boolean ) : string ;
var P : int64 ;
begin
P := Get_Item( Indirect ) ;
Last_Number := 0 ;
move( P, Last_Number, Size ) ;
Result := CVTB( 10, 16, inttostr( Last_Number ) ) ;
end ;
These local functions obtain an integer value via Get_Item and then
convert the value to a string representing that value in the requested base.
function Get_Decimal( Size : integer ; Indirect, Signed : boolean ) : string ;
var P : int64 ;
R : packed record
case byte of
0 : ( int8 : shortint ) ;
1 : ( uint8 : byte ) ;
2 : ( int16 : smallint ) ;
3 : ( uint16 : word ) ;
4 : ( int32 : longint ) ;
5 : ( uint32 : cardinal ) ;
7 : ( _int64 : int64 ) ;
8 : ( _uint64 : uint64 ) ;
end ;
begin
R._int64 := Get_Item( Indirect ) ;
Last_Number := 0 ;
move( R._int64, Last_Number, Size ) ;
if( Signed ) then
begin
case Size of
1 : Result := inttostr( R.int8 ) ;
2 : Result := inttostr( R.int16 ) ;
4 : Result := inttostr( R.int32 ) ;
8 : Result := inttostr( Last_Number ) ;
end ;
end else
begin
if( Size = 8 ) then
begin
Result := inttostr( R._uint64 ) ;
end else
begin
Result := inttostr( Last_Number ) ;
end ;
end ;
end ;
The function to get a decimal value is complicated by the fact that we have to
handle both signed and unsigned values. I could have written code to extend the
sign on an otherwise unsigned value, but decided to go with a structure with a
union and just get the appropriate value when a signed value was needed, since
that is simpler and somewhat faster.
procedure Parse_Directive( var I : integer ) ;
var Starting, Ending : integer ;
begin // Parse_Directive
// Setup...
Starting := I ;
Ending := I ;
_FAO.Count := 1 ;
_FAO.Default_Width := 0 ;
_FAO.Width := -1 ;
_FAO.Source_Size := 0 ;
_FAO.Indirect := False ;
_FAO.Truncate_Right := False ;
_FAO.Fill := ' ' ; // Blank fill
_FAO.Excess_Fill := ' ' ;
_FAO.Directive := '' ;
The local Parse_Directive function is used to parse a directive from
the control string and fill the _FAO structure. The current position in the control
string is passed to the function. The first thing we do is initialize the structure.
If the Width is -1 when we're done, it indicates that the width is the default. The
Ending value indicates the last valid character offset of the directive,
so we update it as we parse through the string.
// Handle width...
Process_Width ;
// Handle count...
if( copy( Control, Ending + 1, 1 ) = '(' ) then // Count + width
begin
_FAO.Count := _FAO.Width ;
_FAO.Width := -1 ;
inc( Ending ) ;
Process_Width ;
if( copy( Control, Ending + 1, 1 ) = '@' ) then
begin
inc( Ending ) ;
_FAO.Indirect := True ;
end ;
_FAO.Directive := copy( Control, Ending + 1, 2 ) ;
Ending := Ending + 2 ;
if( copy( Control, Ending + 1, 1 ) = ')' ) then
begin
inc( Ending ) ;
end ;
end else
begin
if( copy( Control, Ending + 1, 1 ) = '@' ) then
begin
inc( Ending ) ;
_FAO.Indirect := True ;
end ;
_FAO.Directive := copy( Control, Ending + 1, 2 ) ;
Ending := Ending + 2 ;
end ;
The first thing to look for after the exclamation (!) is a number, indicating a
width. The Process_Width local function checks for a width indicator. _FAO.Width
will be assigned the width, if specified. Whether or not there is a width, the
next thing to check for is a parenthesis. If found, we know that what was thought
to be a width is actually a count. So we copy the width value to the count and
set the width to -1. We then check for another width specification by calling the
Process_Width function again. After that, we check for an indirection indicator (@).
If found, we set the flag and advance past it. Then we grab the directive value and "eat" the closing
parenthesis.
On the other hand, if there is no opening parenthesis, then we have a directive.
But first, as in the case of a repeat, we check for an indirection (@). If found,
we set the flag and skip past it. Then we get the directive and update the ending
position.
// Default the width...
if( copy( _FAO.Directive, 1, 1 ) = '<' ) then
begin
setlength( _FAO.Directive, 1 ) ;
dec( Ending ) ;
end else
if( copy( _FAO.Directive, 1, 1 ) = 'B' ) then // Binary
begin
_FAO.Source_Size := Get_Size( copy( _FAO.Directive, 2, 1 ) ) ;
_FAO.Fill := '0' ;
_FAO.Excess_Fill := '0' ;
case _FAO.Source_Size of
8 : _FAO.Default_Width := 64 ;
4 : _FAO.Default_Width := 32 ;
2 : _FAO.Default_Width := 16 ;
1 : _FAO.Default_Width := 8 ;
end ;
if( _FAO.Width = -1 ) then // No width specified
begin
_FAO.Width := _FAO.Default_Width ;
end ;
end else
If the first character of the directive is "<", then we know this is a !n< construct, so
we set the directive to be only the < and exit. Otherwise, if the directive
starts with "B", we know it is a binary directive. We set the size from the Get_Size
function which determines it from the second character of the directive. Octal, Hex, and
Binary all left fill with "0", so we set the fill values. Then, based on the source
size, we set the default output width. Finally, we set the width to the default width
(for cases where the control string doesn't specify the width).
if( copy( _FAO.Directive, 1, 1 ) = 'X' ) then // Hexadecimal
begin
_FAO.Source_Size := Get_Size( copy( _FAO.Directive, 2, 1 ) ) ;
_FAO.Fill := '0' ;
_FAO.Excess_Fill := '0' ;
case _FAO.Source_Size of
8 : _FAO.Default_Width := 16 ;
4 : _FAO.Default_Width := 8 ;
2 : _FAO.Default_Width := 4 ;
1 : _FAO.Default_Width := 2 ;
end ;
if( _FAO.Width = -1 ) then // No width specified
begin
_FAO.Width := _FAO.Default_Width ;
end ;
end else
We repeat the same basic pattern for Hexadecimal directives.
if( copy( _FAO.Directive, 1, 1 ) = 'O' ) then // Octal
begin
_FAO.Source_Size := Get_Size( copy( _FAO.Directive, 2, 1 ) ) ;
_FAO.Fill := '0' ;
_FAO.Excess_Fill := '0' ;
case _FAO.Source_Size of
8 : _FAO.Default_Width := 22 ;
4 : _FAO.Default_Width := 11 ;
2 : _FAO.Default_Width := 6 ;
1 : _FAO.Default_Width := 3 ;
end ;
if( _FAO.Width = -1 ) then // No width specified
begin
_FAO.Width := _FAO.Default_Width ;
end ;
end else
And the same for octal directives.
if( copy( _FAO.Directive, 1, 1 ) = 'Z' ) then // Zero-filled decimal
begin
_FAO.Source_Size := Get_Size( copy( _FAO.Directive, 2, 1 ) ) ;
_FAO.Excess_Fill := '0' ;
end else
if( copy( _FAO.Directive, 1, 1 ) = 'S' ) then // Decimal
begin
_FAO.Source_Size := Get_Size( copy( _FAO.Directive, 2, 1 ) ) ;
end else
begin
_FAO.Truncate_Right := True ; // All strings
end ;
I := Ending + 1 ;
end ; // Parse_Directive
The decimal directives are easier to deal with - we simply set the source size and
excess fill values. In the case of signed decimal, the blank fill is also the default
fill, so we don't need to set it.
For strings, the only thing we need to do is set the Truncate_Right flag.
Once we're through with the directive, we set I to the character after the last
character of the directive - in other words, the next character to process from the
control string.
procedure Process_Width ;
var I : integer ;
begin
if( copy( Control, Ending + 1, 1 ) = '#' ) then
begin
_FAO.Width := Get_Item( False ) ;
inc( Ending ) ;
end else
if( pos( copy( Control, Ending + 1, 1 ), '0123456789' ) > 0 ) then
begin
I := Ending ;
inc( Ending ) ;
while( pos( copy( Control, Ending + 1, 1 ), '0123456789' ) > 0 ) do
begin
inc( Ending ) ;
end ;
_FAO.Width := strtoint( copy( Control, I + 1, Ending - I ) ) ;
end ;
end ;
This function parses the width, if present. If the current character is a digit, then
we have a width, so we iterate through the string until a non-digit is found. We then
take the digits and set the width value from them.
function Get_Size( S : string ) : integer ;
begin
S := copy( _FAO.Directive, 2, 1 ) ;
if( ( S = 'Q' ) or ( S = 'A' ) or ( S = 'H' ) or ( S = 'J' ) ) then // 8 byte
begin
Result := 8 ;
end else
if( ( S = 'L' ) or ( S = 'I' ) ) then // 4 byte
begin
Result := 4 ;
end else
if( S = 'W' ) then // 2 byte
begin
Result := 2 ;
end else
if( S = 'B' ) then // 1 byte
begin
Result := 1 ;
end ;
end ;
This simple function takes a size specifier (Q,L,W,B, etc.) and returns the number of
bytes represented by it.
function Ending_Nest_Directive( var I : integer ) : string ;
var Loop, Nested : integer ;
begin
// Setup...
Result := '' ;
Nested := 0 ;
// Look for directive...
Loop := I + 1 ;
while( Loop <= length( Control ) ) do
begin
if( Control[ Loop ] = '!' ) then
begin
if( copy( Control, Loop + 1, 1 ) = '>' ) then
begin
dec( Nested ) ;
if( Nested < 1 ) then
begin
break ;
end ;
end else
if( pos( copy( Control, Loop + 1, 1 ), '1234567890' ) > 0 ) then
begin
while(
( Loop <= length( Control ) )
and
( pos( copy( Control, Loop + 1, 1 ), '1234567890' ) > 0 )
) do
begin
inc( Loop ) ;
end ;
if( copy( Control, Loop, 1 ) = '<' ) then // Another !n< directive
begin
inc( Nested ) ;
end ;
end ;
end ; // if( Control[ Loop ] = '!' )
inc( Loop ) ;
end ; // while( Loop <= length( Control ) )
Result := copy( Control, I, Loop - I ) ;
I := Loop + 2 ;
end ; // Ending_Nest_Directive
Finally, this function is used to find the end of a !n< !> directive pair. Since
these pairs can be nested, we can't simply look for the first closing directive. So
we iterate through the string, looking for either a start or end of a pair. If a
start is found, we increment the Nested value. If an end is found, we decrement the
Nested value. After decrementing, if the Nested value is less than 1, we have found
the matching end to the starting directive. Once found, we update the passed index
and return the string encapsulated within the matched directive pair.
There's a fair bit of code, but nothing complicated. In the next article, we'll look at the UCL F$FAO lexical function.
Copyright © 2020 by Alan Conroy. This article may be copied
in whole or in part as long as this copyright is included.
|