f


1 Introduction
2 Ground Rules

Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class

The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up

The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup

Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API

Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O

UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation

UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services

UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN

CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND

Glossary/Index


Downloads

LIB_SPAWN

In this article we will look at the SPAWN service.

function SPAWN( Command : string ; _Input : string ;
    _Output : string ; Flags : integer ; Name : string ;
    PID : integer ; var Status : int64 ; Event_Flags : int64 = 0 ;
    AST : int64 = 0 ; ASTPrm : int64 = 0 ; Prompt : string = '' ;
    CLI : string = '' ; Table : string = '' ) : int64 ;

var SRB_Command, SRB_Input, SRB_Output, SRB_Name, SRB_Prompt, SRB_CLI, SRB_Table : TSRB ;

begin
    Set_String( Command, SRB_Command ) ;
    Set_String( _Input, SRB_Input ) ;
    Set_String( _Output, SRB_Output ) ;
    Set_String( Name, SRB_Name ) ;
    Set_String( Prompt, SRB_Prompt ) ;
    Set_String( CLI, SRB_CLI ) ;
    Set_String( Table, SRB_Table ) ;
    Result := LIB_SPAWN( int64( @SRB_Command ), int64( @SRB_Input ),
        int64( @SRB_Output ), int64( @Flags ), int64( @SRB_Name ),
        int64( @PID ), int64( @Status ), int64( @Event_Flags ),
        int64( @AST ), int64( @ASTPrm ), int64( @SRB_Prompt ),
        int64( @SRB_CLI ), int64( @SRB_Table ) ) ;
end ;
This is the Pascal interface for LIB_SPAWN.

function LIB_SPAWN( Command : int64 = 0 ; _Input : int64 = 0 ;
    _Output : int64 = 0 ; Flags : integer = 0 ; Name : int64 = 0 ;
    PID : integer = 0 ; Status_Addr : int64 = 0 ; Event_Flags : int64 = 0 ;
    AST : int64 = 0 ; ASTPrm : int64 = 0 ; Prompt : int64 = 0 ; CLI : int64 = 0 ;
    Table : int64 = 0 ) : int64 ;

var Request : TString7I6_Request ;
    Status : int64 ;
    Prv, Prvadr, stsflg : int64 ;
    Temp : TSRB ;
    Monitor_Flags : int64 ;
    New_PID : TPID ;

begin
    // Setup...
    if( Flags <> 0 ) then
    begin
        Flags := Pint64( Flags )^ ;
    end ;
    Prvadr := 0 ;
    stsflg := 0 ;

    // Validation...
    if( ( Flags > 511 ) or ( Flags < 0 ) ) then
    begin
        Result := LIB_INVARG ; // Invalid bits set
        exit ;
    end ;
You may have gathered from previous articles, that Starlet provides two basic functions. First, it provides services at the Application layer. Second, it provides simplified interfaces to executive layer services. This is true of both VMS and UOS. LIB_SPAWN is one of the second types. Creating new processes is obviously something left to the executive for security reasons, so LIB_SPAWN simply provides a programming shortcut to the SYS_CREPRC system service.

The first thing we do is get and validate parameters. Only the lower 9 bits of the flags are supported and using any others generates an error.

    // Prepare parameters...
    if( ( Flags and CLI_M_AUTHPRIV ) <> 0 ) then // Wants to use authorized privileges
    begin
        fillchar( Temp, sizeof( Temp ), 0 ) ;
        fillchar( Itemlist, sizeof( Itemlist ), 0 ) ;
        Itemlist[ 0 ].Item_Code := UAI_PRIV ;
        Itemlist[ 0 ].Buffer_Length := sizeof( Prv ) ;
        Itemlist[ 0 ].Buffer_Address := int64( @Prv ) ;
        Itemlist[ 0 ].Return_Length_Address := 0 ;
        Result := SYS_GETUAI( 0, 0, Temp, int64( @Itemlist ), 0, 0, 0 ) ;
        if( Result <> 0 ) then
        begin
            exit ;
        end ;
        Prvadr := int64( @Prv ) ;
    end ;
If the CLI_M_AUTHPRIV flag is set, we want the created process to have all of its authorized privileges. This requires that we obtain the authorized privileges for the user via SYS_GETUAI and having them written to the Prv variable so we can pass them to SYS_CREPRC.

    if( ( Flags and CLI_M_TRUSTED ) <> 0 ) then
    begin
        stsflg := stsflg or PRC_M_TRUSTED ;
    end ;
    if( ( Flags and CLI_M_NONRANDOM ) <> 0 ) then
    begin
        stsflg := stsflg or PRC_M_NONRANDOM ;
    end ;
    if( ( Flags and CLI_M_SUBSYSTEM ) <> 0 ) then
    begin
        stsflg := stsflg or PRC_M_SUBSYSTEM ;
    end ;
    if( ( Flags and CLI_M_SUBSYSTEM ) <> 0 ) then
    begin
        stsflg := stsflg or PRC_M_SUBSYSTEM ;
    end ;
    if( ( Flags and ( CLI_M_NOCLISYM or CLI_M_NOLOGNAM ) ) = 0 ) then
    begin
        stsflg := stsflg or PRC_M_CLONE_SYMBOLS ;
    end ;
Many of the flags for LIB_SPAWN are passed on to SYS_CREPRC. We translate them into the appropriate values. Note that because VMS separates symbols from logicals, whereas UOS combines them both into symbols, if either VMS flag is specified, we set the PRC_M_CLONE_SYMBOLS flag.

    // Create the process...
    Result := SYS_CREPRC( int64( @New_PID ), CLI, _Input, _Output, 0, Prvadr, 0,
        Name, 0, 0, 0, int64( @stsflg ), 0, 0, 0 ) ;
    if( Result <> 0 ) then
    begin
        exit ;
    end ;
    if( PID <> 0 ) then
    begin
        pPID( PID )^ := New_PID ;
    end ;
Now we call SYS_CREPRC to create the process. If an error is returned, we exit with that error. Otherwise, we take the PID written from SYS_CREPRC to New_PID, and write it to the return address passed to us (unless the address passed to us was 0).

    if( ( Flags and CLI_M_NOWAIT ) = 0 ) then
    begin
        Monitor_Flags := 1 ;
        SYS_Monitor_Process( int64( @PID ), Event_Flags, AST, ASTPrm, int64( @Monitor_Flags ) ) ;
        if( ( Flags and CLI_M_NOTIFY ) <> 0 ) then
        begin
            LIB_Put_Output( 'Process terminated' + CRLF ) ;
        end ;
    end ;
end ; // LIB_SPAWN
Finally, if the CLI_M_NOWAIT flag isn't specified, the user wants to wait until the subprocess ends. In VMS, I suspect that a "mailbox" is created to receive the process termination notification, but I don't know that for certain. But rather than that, we will make a call to a new service: SYS_Monitor_Process, which will block our process until the notification occurs. After our process is resumed, if the CLI_M_NOTIFY flag is set, we'll output a notification. Why not use a mailbox? Because it would count against the process' mailbox quota and it has a fair bit of overhead. Plus I have some ideas for how the SYS_Monitor_Process could be used for additional features in the future. I won't bother to document that service quite yet, but we will look at the implementation as of now.

function SYS_Monitor_Process( PID, EFN, AST, ASTPrm, Flags : int64 ) : int64 ;

var Status : int64 ;
    SysRequest : TInteger5_Request ;

begin
    Status := 0 ;
    fillchar( SysRequest, sizeof( SysRequest ), 0 ) ;
    SysRequest.Request.Subsystem := UOS_Subsystem_USC ;
    SysRequest.Request.Request := UOS_USC_Monitor ;
    SysRequest.Request.Length := sizeof( SysRequest ) - sizeof( Sysrequest.Request ) ;
    SysRequest.Request.Status := integer( @Status ) ;
    SysRequest.Int1 := PID ;
    SysRequest.Int2 := efn ;
    SysRequest.Int3 := AST ;
    SysRequest.Int4 := astprm ;
    SysRequest.Int5 := Flags ;

    Call_To_Ring0( integer( @SysRequest ) ) ;
end ;
This is a standard system service wrapper - nothing unusual to comment on.

        UOS_USC_Monitor:
            begin
                UE := Enter_System_Call( Request, SReq, PID, MMC, sizeof( TInteger5_Request ) - 
                    sizeof( SReq ), Address ) ;
                if( UE <> nil ) then
                begin
                    Set_Last_Error( UE ) ;
                    exit ;
                end ;
                try
                    I5_Request := PInteger5_Request( Address ) ;
                    Monitor_Process( I5_Request.Int1, I5_Request.Int2, I5_Request.Int3, 
                        I5_Request.Int4, I5_Request.Int5 ) ;
                finally
                    Exit_System_Call( Request, PID, MMC, 
                        sizeof( TItem_Request ) - sizeof( SReq ) ) ;
                end ;
            end ;
This code is added to the USC.API method. This is also typical of what we've seen before.

procedure TUSC.Monitor_Process( PID, EFN, AST, ASTPrm, Flags : int64 ) ;

var Op : TUOS_Operation ;
    Process : TProcess ;
    Status : integer ;

begin
    // Get source process...
    if( PID = 0 ) then
    begin
        PID := Kernel.PID ;
    end else
    begin
        PID := Get_User_Integer( Kernel, Kernel.PID, PID, Status ) ;
        if( Status = UE_Error ) then
        begin
            if( MMC.Last_Error = nil ) then
            begin
                Generate_Exception( UOSErr_Memory_Address_Error ) ;
            end ;
            exit ;
        end ;
        Process := Get_Process( PID ) ;
        if( Process = nil ) then
        begin
            Generate_Exception( UOSErr_Nonexistent_Process ) ;
            exit ;
        end ;
        if( ( PID <> Kernel.PID ) and ( Kernel.PID <> Process.Parent._PID ) ) then
        begin
            Generate_Exception( UOSErr_Invalid_Context ) ;
            exit ;
        end ;
    end ;
This method is used to set up a callback notification for a process. For now, the only notification is for process termination. First, we get the PID for the process we want a notification from and verify that it is a valid process. If not, we exit with an error. Also, the process must be the calling process or an immediate child of the calling process.

    // Get Remaining parameters...
    if( EFN <> 0 ) then
    begin
        EFN := Get_User_Integer( Kernel, Kernel.PID, EFN, Status ) ;
        if( Status = UE_Error ) then
        begin
            if( MMC.Last_Error = nil ) then
            begin
                Generate_Exception( UOSErr_Memory_Address_Error ) ;
            end ;
            exit ;
        end ;
    end ;
    if( AST <> 0 ) then
    begin
        AST := Get_User_Integer( Kernel, Kernel.PID, AST, Status ) ;
        if( Status = UE_Error ) then
        begin
            if( MMC.Last_Error = nil ) then
            begin
                Generate_Exception( UOSErr_Memory_Address_Error ) ;
            end ;
            exit ;
        end ;
    end ;
    if( ASTPrm <> 0 ) then
    begin
        ASTPrm := Get_User_Integer( Kernel, Kernel.PID, ASTPrm, Status ) ;
        if( Status = UE_Error ) then
        begin
            if( MMC.Last_Error = nil ) then
            begin
                Generate_Exception( UOSErr_Memory_Address_Error ) ;
            end ;
            exit ;
        end ;
    end ;
    if( Flags <> 0 ) then
    begin
        Flags := Get_User_Integer( Kernel, Kernel.PID, Flags, Status ) ;
        if( Status = UE_Error ) then
        begin
            if( MMC.Last_Error = nil ) then
            begin
                Generate_Exception( UOSErr_Memory_Address_Error ) ;
            end ;
            exit ;
        end ;
    end ;

    Op := Create_Operation ;
    Op.PID := Kernel.PID ;
    Op.EF := EFN ;
    Op.AST := AST ;
    Op.ASTPrm := ASTPrm ;
    if( ( Flags and 1 ) = 1 ) then
    begin
        Op.Blocking := True ;
    end ;
    Process.Monitor_Operation := Op ;
end ; // TUSC.Monitor_Process
Next we get the remaining parameters, construct a operation object, set the values and then set the process' Monitor_Operation to this object. Note that if flag bit 1 is specified, we block the calling process.

                        _Monitor_Operation : TUOS_Operation ;
This item is added to the TProcess instance data.

type TUOS_Operation = class
                          public // Property handlers...
                              function Get_PID : TPID ;
                                  virtual ; stdcall ; abstract ;
                              procedure Set_PID( Value : TPID ) ;
                                  virtual ; stdcall ; abstract ;
                              function Get_EF : longint ;
                                  virtual ; stdcall ; abstract ;
                              procedure Set_EF( Value : longint ) ;
                                  virtual ; stdcall ; abstract ;
                              function Get_Blocking : boolean ;
                                  virtual ; stdcall ; abstract ;
                              procedure Set_Blocking( Value : boolean ) ;
                                  virtual ; stdcall ; abstract ;
                              function Get_AST : int64 ;
                                  virtual ; stdcall ; abstract ;
                              procedure Set_AST( Value : int64 ) ;
                                  virtual ; stdcall ; abstract ;
                              function Get_ASTPrm : int64 ;
                                  virtual ; stdcall ; abstract ;
                              procedure Set_ASTPrm( Value : int64 ) ;
                                  virtual ; stdcall ; abstract ;

                          public // Properties...
                              property PID : TPID
                                  read Get_PID
                                  write Set_PID ;
                              property EF : longint
                                  read Get_EF
                                  write Set_EF ;
                              property Blocking : boolean
                                  read Get_Blocking
                                  write Set_Blocking ;
                              property AST : int64
                                  read Get_AST
                                  write Set_AST ;
                              property ASTPrm : int64
                                  read Get_ASTPrm
                                  write Set_ASTPrm ;
                      end ;
This is the definition of TUOS_Operation.

type TOperation = class( TUOS_Operation )
                      private // Instance data...
                          _PID : TPID ; // Process
                          _EF : longint ; // Event flag
                          _Blocking : boolean ; // True if process blocked
                          _AST : int64 ;
                          _ASTPrm : int64 ;

                      public // Overrides...
                          function Get_PID : TPID ; override ;
                          procedure Set_PID( Value : TPID ) ; override ;
                          function Get_EF : longint ; override ;
                          procedure Set_EF( Value : longint ) ; override ;
                          function Get_Blocking : boolean ; override ;
                          procedure Set_Blocking( Value : boolean ) ; override ;
                          function Get_AST : int64 ; override ;
                          procedure Set_AST( Value : int64 ) ; override ;
                          function Get_ASTPrm : int64 ; override ;
                          procedure Set_ASTPrm( Value : int64 ) ; override ;
                  end ; // TOperation


function TOperation.Get_PID : TPID ;

begin
    Result := _PID
end ;


procedure TOperation.Set_PID( Value : TPID ) ;

begin
    _PID := Value ;
end ;


function TOperation.Get_EF : longint ;

begin
    Result := _EF ;
end ;


procedure TOperation.Set_EF( Value : longint ) ;

begin
    _EF := Value ;
end ;


function TOperation.Get_Blocking : boolean ;

begin
    Result := _Blocking ;
end ;


procedure TOperation.Set_Blocking( Value : boolean ) ;

begin
    _Blocking := Value ;
end ;


function TOperation.Get_AST : int64 ;

begin
    Result := _AST ;
end ;


procedure TOperation.Set_AST( Value : int64 ) ;

begin
    _AST := Value ;
end ;


function TOperation.Get_ASTPrm : int64 ;

begin
    Result := _ASTPrm ;
end ;


procedure TOperation.Set_ASTPrm( Value : int64 ) ;

begin
    _ASTPrm := Value ;
end ;
This is the implementation of an operation descendant.

                        _Monitor_Operation : TUOS_Operation ;

                        property Monitor_Operation : TUOS_Operation
                            read _Monitor_Operation
                            write Set_Monitor_Operation ;
This instance data and property is added to the TProcess class.

procedure TProcess.Set_Monitor_Operation( Value : TUOS_Operation ) ;

begin
    if( _Monitor_Operation <> nil ) then
    begin
        _Monitor_Operation.Free ;
    end ;
    _Monitor_Operation := Value ;
end ;
This is the handler for the Monitor_Operation property. Only one Monitor_Operation is allowed at a time, so we free any pre-existing ones before assigning the new one.

    if( _Monitor_Operation <> nil ) then
    begin
        if( _Monitor_Operation.EF <> 0 ) then
        begin
            //TODO
        end ;
        if( _Monitor_Operation.AST <> 0 ) then
        begin
            _Kernel.Call_AST( _Monitor_Operation.PID, _Monitor_Operation.AST, 
                _Monitor_Operation.ASTPrm ) ;
        end ;
        if( _Monitor_Operation.Blocking ) then
        begin
            _Kernel.USC.Unblock( _Monitor_Operation.PID ) ;
        end ;
        Monitor_Operation := nil ;
    end ; // if( _Monitor_Operation <> nil )
The only remaining thing now is to add the above code to the TProcess destructor so that when the process is destroyed, a callback is made. We are leaving the event flag handling to future articles. If the process in question blocked on this notification, it is unblocked.

In the next article, we will look at the documentation for the SYS_CREPRC service.

 

Copyright © 2023 by Alan Conroy. This article may be copied in whole or in part as long as this copyright is included.