1 Introduction
2 Ground Rules

Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class

The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up

The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup

Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API

Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O

UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation

UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services

UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN

CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND

Glossary/Index


Downloads

SYS_DELPROC and LIB_GET_FOREIGN

In the previous article, we referenced a couple new system services. In this article we will cover them. Here's the user documentation for DELPRC:

SYS_DELPRC

Allows the process to terminate itself or another process.

Format

SYS_DELPRC {pid} {, name} {, flags}

Arguments

pid
An address pointing to a 64-bit integer containing the process ID to be deleted. Either the PID or the name must be specified if a process other than the current process is to be terminated. Ignored if 0 or if it points to a value of 0.

name
A pointer to an SRB which points to a process name string. If the PID provided is non-zero, it takes precedence over the passed name.

flags
A pointer to a 64-bit integer containing flags that modify the operation of the process termination. The flags are:
MnuemonicMeaning
DELPRC_M_EXITExit handlers are called, according to mode. If no exit handler has been specified, the process is immediately terminated.
DELPROC_M_MODEIndicates the ring in which to call the exit handler.
DELPROC_M_NOEXITDisables calling any exit handler.

Description

This service allows a process to terminate itself or another process. If neither PID nor name is specified, the calling process is terminated. Exit handlers are defined via mailboxes. If no exit handler mailbox has been specified, process termination is immediate. It is possible that, due the time necessary to process an exit handler, this system service may return with a successful completion status before the process is actually terminated. See the DCLEXH service for more information on exit handlers.
Any process with the same UIC as the calling process may be terminated with this service. However, GROUP privilege is needed to delete a process with a different UIC but a matching group to the calling process. WORLD privilege is required to delete a process with no matching group to the calling process.

Condition Values Returned

SS_NORMAL Normal completion of service.
SS_NOPRIV The calling process does not have the privilege to delete the specified process.
SS_NONEXPR The specified process does not exist.


Note that this service makes use of exit procedures, which we won't be covering until the future (at which time we will revisit some of this code).

function SYS_DELPRC( pidadr : int64 = 0 ; prcnam : int64 = 0 ; flags : int64 = 0 ) : int64 ;

var SRB : PSRB ;
    Status : int64 ;
    SysRequest : TS1I2_Request ;

begin
    SRB := PSRB( pointer( Prcnam ) ) ;
    fillchar( SysRequest, sizeof( SysRequest ), 0 ) ;
    Status := 0 ;
    SysRequest.Request.Subsystem :=  UOS_Subsystem_USC ;
    SysRequest.Request.Request := UOS_USC_DELPRC ;
    SysRequest.Request.Length := sizeof( SysRequest ) - sizeof( Sysrequest.Request ) ;
    SysRequest.Request.Status := integer( @Status ) ;
    if( SRB <> nil ) then
    begin
        SysRequest.SRB.Buffer := SRB.Buffer ;
        SysRequest.SRB.Length := SRB.Length ;
    end ;
    SysRequest.Integer1 := PIDAdr ;
    SysRequest.Integer2 := Flags ;

    Call_To_Ring0( integer( @SysRequest ) ) ;

    Result := Status ;
end ;
This new routine in the SYS unit is like the others we've seen.

        UOS_USC_DELPRC:
            begin
                UE := Enter_System_Call( Request, SReq, PID, MMC, 
                    sizeof( TS1I2_Request ) - sizeof( SReq ), Address ) ;
                if( UE <> nil ) then
                begin
                    Set_Last_Error( UE ) ;
                    exit ;
                end ;
                try
                    S1I2_Request := PS1I2_Request( Address ) ;
                    if( Delete_Process( S1I2_Request.Integer1, S1I2_Request.SRB, S1I2_Request.Integer2 ) = 
                        0 ) then
                    begin
                        Kernel.Kill_Process( PID ) ;
                    end ;
                finally
                    Exit_System_Call( Request, PID, MMC, sizeof( TS1I2_Request ) - sizeof( SReq ) ) ;
                end ;
            end ;
This code is added to the USC's API method. We call the Delete_Process method. If that succeeds, the process has been deleted and we simply notify the kernel of the fact via the Kill_Process method. We will cover that method in the future.

procedure TUSC.Delete_Process( PIDAdr : int64 ; PrcName : TSRB ; Flags : int64 ) ;

var I : integer ;
    IOSB : TIOSB ;
    PID, Flag, TargetPID : int64 ;
    Name : string ;
    Process, Target_Process : TProcess ;
    Status : longint ;

begin
    // Setup...
    PID := Kernel.PID ;
    TargetPID := 0 ;
    Name := '' ;
This new method of the USC is used to delete a process.

    // Get parameters...
    if( PIDAdr <> 0 ) then // PID Address specified
    begin
        TargetPID := Get_User_Integer( Kernel, PID, pidadr, Status ) ;
        if( Status = UE_Error ) then
        begin
            IOSB.r_io_64.w_status := Status ;
            if( MMC.Last_Error = nil ) then
            begin
                Generate_Exception( UOSErr_Memory_Address_Error ) ;
            end ;
            exit ;
        end ;
        if( TargetPID = 0 ) then
        begin
            TargetPID := PID ;
        end ;
    end ; // if( PIDAdr <> 0 )
    if( ( TargetPID = 0 ) and ( PrcName.Length > 0 ) ) then
    begin
        Name := Get_String( Kernel, PID, PrcName, Status ) ;
        if( Status = UE_Error ) then
        begin
            IOSB.r_io_64.w_status := Status ;
            if( MMC.Last_Error = nil ) then
            begin
                Generate_Exception( UOSErr_Memory_Address_Error ) ;
            end ;
            exit ;
        end ;
        //TODO:Handle process names with node prefix on clusters
        Name := lowercase( Name ) ;
        for I := 0 to Processes.Count - 1 do
        begin
            Process := TProcess( Processes[ I ] ) ;
            if( Process <> nil ) then
            begin
                if( Name = lowercase( Process.Name ) ) then
                begin
                    TargetPID := Process._PID ;
                    break ;
                end ; // if( prcnam = lowercase( Process.Name ) )
            end ; // if( Process <> nil )
        end ; // for I := 0 to Processes.Count - 1
        if( TargetPID = 0 ) then // Named process not found
        begin
            Generate_Exception( UOSErr_Nonexistent_Process ) ;
            exit ;
        end ;
    end ; // if( ( PrcName <> 0 ) and ( TargetPID = 0 ) )
    if( Flags <> 0 ) then // Flags Address specified
    begin
        Flag := Get_User_Integer( Kernel, PID, Flags, Status ) ;
        if( Status = UE_Error ) then
        begin
            IOSB.r_io_64.w_status := Status ;
            if( MMC.Last_Error = nil ) then
            begin
                Generate_Exception( UOSErr_Memory_Address_Error ) ;
            end ;
            exit ;
        end ;
    end ; // if( PIDAdr <> 0 )
This code processes the parameters. If it looks familiar, it should. This is very similar to the parameter processing code in the GETJPI service.

    // Get process...
    if( TargetPID = 0 ) then
    begin
        TargetPID := PID ;
    end ;
    Target_Process := Get_Process( TargetPID ) ;
    if( Target_Process = nil ) then
    begin
        Generate_Exception( UOSErr_Nonexistent_Process ) ;
        exit ;
    end ;
If no process is provided, we default to the current one. In either case, we get the process and exit with an error if it doesn't exist.

    // Validate privileges if differnet process...
    if( ( TargetPID <> PID ) and ( PID <> 0 ) ) then
    begin
        // Different process...
        Process := Get_Process( PID ) ;
        if( Process._User <> Target_Process._User ) then // Different user
        begin
            if( ( Process.Current_Privileges and WORLD ) = 0 ) then
            begin
                if( ( Process.Current_Privileges and GROUP ) = 0 ) then
                begin
                    //TODO
                    Set_Last_Error( Create_Error( UOSErr_Protection_Violation ) ) ;
                    exit ;
                end ;
            end ; // if( ( Process.Current_Privileges and WORLD ) = 0 )
        end ; // if( Process._User <> Target_Process._User )
    end ; // if( ( TargetPID <> Kernel.PID ) and ( Kernel.PID <> 0 ) )

    Terminate_Image( TargetPID ) ;
    Target_Process.Free ;
end ; // TUSC.Delete_Process
If the target process is not the same as the calling process, we check for privileges. As we've mentioned before, groups are a discussion for the future. Hence the TODO comment. If the processes are different and the calling process has insufficient privileges, we exit with an error. Otherwise, we terminate any image that the process is currently running and then free the process itself.

The call to OS^.Command_Line makes a call to LIB_GET_FOREIGN. Here is the user documentation:


The LIB_GET_FOREIGN routine retrieves the command line used to invoke the currently running image. This is named after the VMS servive; the term "foreign" has to do with the way VMS handles command lines. UOS does things slightly differently, but we keep the name for compatibility sake. Here is the user documentation:

LIB_GET_FOREIGN

Returns the text of the command line that invoked the current program, minus the program's name.

Format

LIB_GET_FOREIGN result {, prompt} {,len} {,flags}

Returns

64-bit integer Status code.

Arguments
result

The address of a SRB structure that defines the location where the command line is to be written, and the maximum size of that location.

prompt

Optional user-supplied prompt for text that LIB_GET_FOREIGN uses if no command-line text is available. This is the address of an SRB structure that defines the prompt text. If this is 0 or the prompt string is null, and there is no command-line text available, a zero-length string is returned.

len

Optional address of where to write the 64-bit length of the returned command line text. This will be the size of the string actually returned.

flags

The address of a 64-bit integer flags value. If provided, and the low bit is set in the flag, the user is prompted unconditionally. Otherwise, the user is only prompted if there is no command-line available. If the prompt is omitted or null, and there is no command-line, a null string is returned.

Description

LIB_GET_FOREIGN returns the contents of the command line that was used to activate the current image, minus the program name. Optionally, the user can be prompted for data if there is no command line text available. The service can be called multiple times to retrieve multiple lines of data. Data returned due to prompting is read from SYS$INPUT. It can be called once to get the command line and then again to get additional parameters from the user.
The command line is set by the shell when it begins execution of a program.

Condition Values Returned

SS_NORMAL Routine completed successfully
LIB_INPSTRTRU The result buffer was too small to hold the command-line. Only the characters that fit are returned.


        UOS_FIP_Get_Foreign:
            begin
                UE := Enter_System_Call( Request, SReq, PID, MMC, 
                    sizeof( TS2I2_Request ) - sizeof( SReq ), Address ) ;
                if( UE <> nil ) then
                begin
                    Set_Last_Error( UE ) ;
                    exit ;
                end ;
                try
                    S2I2_Request := PS2I2_Request( Address ) ;

                    // Read input into user's buffer...
                    IOSB.r_io_64.w_status := Get_Foreign( S2I2_Request.SRB1, S2I2_Request.SRB2,
                        S2I2_Request.Integer1, S2I2_Request.Integer2 ) ;
                    Write_User_int64( Kernel, PID, S2I2_Request.Request.Status, IOSB.r_io_64.w_status ) ;
                finally
                    Exit_System_Call( integer( S2I2_Request ), PID, MMC, 
                        sizeof( TS2I2_Request ) - sizeof( SReq ) ) ;
                end ;
            end ;
This code is added to the FIP's API method. You might wonder why this is in the FIP rather than the USC, but this is because the routine can act as an I/O service. It calls the USC to get the actual command line text.

function TUOS_FiP.Get_Foreign( Res, Prompt : TSRB ; Len, Flags : int64 ) : int64 ;

var Flag, R : int64 ;
    IOSB : TIOSB ;
    PID : TPID ;
    Prmpt, S : string ;
    Status : longint ;

begin
    // Setup...
    Result := 0 ;
    PID := Kernel.PID ;
This new FIP method does the work of returning the command line. This code sets up for the following.

    // Get parameters...
    Flag := 0 ;
    if( Flags <> 0 ) then
    begin
        Get_User_Integer( Kernel, PID, Flag, Status ) ;
        if( Status <> 0 ) then
        begin
            Result := Status ;
            exit ;
        end ;
    end ;
    Prmpt := Get_String( Kernel, PID, Prompt, Status ) ;
Next we get the parameter values from the user memory.

    // Get command line...
    S := USC.Command_Line( PID ) ;
    if(
        ( Prmpt <> '' ) // Prompt specified
        and
        ( ( ( Flag and 1 ) = 1 ) or ( S = '' ) ) // No command line or force prompting
      ) then // Prompt the user
    begin
        // Do IO_READPROMPT
        QIO( 0, RH_SysInput, IO_READPROMPT, IOSB, 0, 0,
            Res.Buffer, Res.Length, 0, 0, Prompt.Buffer, Prompt.Length ) ;
        Result := IOSB.r_io_64.w_status ;
        if( ( Result = 0 ) and ( Len <> 0 ) ) then
        begin
            Result := Write_User_int64( Kernel, PID, Len, IOSB.r_io_64.r_bcnt_32.l_bcnt ) ;
        end ;
        exit ;
    end ;
Next we get the command line from the process. If a prompt is provided and the flag is set (or there is no command line), we prompt the user by calling QIO using the IO_READPROMPT option.

    // Return the command line...
    if( Res.Length < length( S ) ) then
    begin
        setlength( S, Res.Length ) ;
        Result := UOSErr_Buffer_Overflow ;
    end ;
    R := Set_User_String( Kernel, PID, Res, S ) ;
    if( R = UE_Error ) then
    begin
        Result := R ;
        exit ;
    end ;
    if( Len <> 0 ) then
    begin
        R := Write_User_int64( Kernel, PID, Len, Length( S ) ) ;
        if( R = UE_Error ) then
        begin
            Result := R ;
            exit ;
        end ;
    end ;
end ; // TUOS_FiP.Get_Foreign

Finally, we make sure the result doesn't overrun the provided buffer, write the result, and write the length, if requested.

function TUSC.Command_Line( PID : TPID ) : string ;

var P : TProcess ;

begin
    P := Get_Process( PID ) ;
    if( P = nil ) then // Process doesn't exist
    begin
        Result := '' ;
        exit ;
    end ;
    Result := P.Command_Line ;
end ;
This new method of the USC returns the command line for a process.

In the next few articles, we will cover the process of logging in, and related code.

 

Copyright © 2021 by Alan Conroy. This article may be copied in whole or in part as long as this copyright is included.