1 Introduction
2 Ground Rules

Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class

The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up

The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup

Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API

Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O

UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation

UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services

UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN

CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND

Glossary/Index


Downloads

SYS_WRITE Service

In the previous article, we wrote to a file in our INQUIRE command processing. In this article, we cover the code for Blockwrite and address the SYS_WRITE service, which does the actual file output. Here is the system call documentation:

WRITE

The WRITE service transfers a specified number of bytes to a file or device.

Format

WRITE rab, err, suc

Arguments

rab
RAB structure that defines what to write.

err
Address of AST routine to call if the operation is unsuccessful. If non-zero, this overrides RAB_AST_Err field of the RAB.

suc
Address of AST routine to call when the operation completess successfully. If non-zero, this overrides RAB_AST_Success field of the RAB.

Description

The address of the data and its size must be passed to the service. Writing to/past the end of a file results in the extending the file. The following RAB fields are used by this service:
RAB fieldDescription
RAB_SizeByte size of the RAB structure
RAB_AST_ErrAddress of AST routine to call on error
RAB_AST_SuccessAddress of AST routine to call when operation completes successfully
RAB_Data_StreamData stream to write to
RAB_L_BKTFile offset to write to
RAB_W_ISIHandle to open file
RAB_B_RACAccess type. 0 = binary file access.
RAB_L_ROPRecord processing options (see RAB_V_*)
RAB_L_UBFAddress of data to write
RAB_W_USZNumber of bytes to write

Condition Values Returned
RMS_RAB
UOSErr_Invalid_Handle
UOSErr_Memory_Address_Error
UOSErr_Quota_Exceeded
Other errors specific to the device or file


procedure TUOS_File_Wrapper.Blockwrite( var Buf ; Count : int64 ;
   var Res : int64 ) ;

var RAB : TRAB ;

begin
    fillchar( RAB, sizeof( RAB ), 0 ) ;
    RAB.RAB_Size := sizeof( RAB ) ;
    RAB.RAB_L_BKT := _FilePos ;
    RAB.RAB_W_ISI := FAB.FAB_Q_HANDLE ;
    RAB.RAB_L_UBF	:= int64( @Buf ) ; // User buffer address
    RAB.RAB_W_USZ	:= Count ; // Record size
    SYS_WRITE( int64( @RAB ), 0, 0 ) ;
    Res := RAB.RAB_W_RSZ ; // Bytes actually written
end ;
The code in the previous article made use of the Blockwrite function of the File object. Thus far, we had only discussed reading data from files. So, here we add this new file method to allow writing data to files.

function SYS_WRITE( RAB : int64 ; Err : int64 = 0 ; Succ : int64 = 0 ) : int64 ;

var Status : int64 ;
    SysRequest : TInteger_Request ;

begin
    if( RAB = 0 ) then
    begin
        Result := RMS_RAB ;
        Call_To_User( Err ) ;
        exit ;
    end ;
    Status := 0 ;
    fillchar( SysRequest, sizeof( SysRequest ), 0 ) ;
    SysRequest.Request.Subsystem :=  UOS_Subsystem_FIP ;
    SysRequest.Request.Request := UOS_FIP_Write ;
    SysRequest.Request.Length := sizeof( SysRequest ) - sizeof( TSystem_Request ) ;
    SysRequest.Request.Status := integer( @Status ) ;
    SysRequest.Int := RAB ;

    Call_To_Ring0( integer( @SysRequest ) ) ;
end ; // SYS_WRITE
This new function wraps the call to the kernel. Other than the UOS_FIP_Write request value, this is identical to the SYS_READ routine.

        UOS_FIP_Write:
            begin
                UE := Enter_System_Call( Request, SReq, PID, MMC,
                    sizeof( Integer_Request ) - sizeof( SReq ), Address ) ;
                if( UE <> nil ) then
                begin
                    Set_Last_Error( UE ) ;
                    exit ;
                end ;
                try
                    Integer_Request := PInteger_Request( Address ) ;

                    Status := File_Write( Integer_Request.Int, IOSB ) ;
                    Write_User_int64( Kernel, PID, Integer_Request.Request.Status,
                        IOSB.r_io_64.r_bcnt_32.l_bcnt ) ;
                finally
                    Exit_System_Call( integer( Integer_Request ), PID, MMC,
                        sizeof( Integer_Request ) - sizeof( SReq ) ) ;
                end ;
            end ;
This new code in the kernel's API method handles the WRITE call.

function TUOS_FiP.File_Write( _RAB : int64 ; var IOSB : TIOSB ) : int64 ;

var Buff : PAnsiChar ;
    Offset : integer ;
    PID : TPID ;
    RAB : TRAB ;
    Resource : TResource ;
    S : string ;

begin>
    Result := 0 ;
    if( _RAB = 0 ) then
    begin
        Result := RMS_RAB ;
        IOSB.r_io_64.w_status := Result ;
        exit ;
    end ;

    // Get the RAB...
    fillchar( RAB, sizeof( RAB ), 0 ) ;
    PID := Kernel.PID ;
    Get_User_Data( Kernel, PID, _RAB, 2, RAB, IOSB.r_io_64.w_status ) ; // Get RAB length
    if( IOSB.r_io_64.w_status <> 0 ) then
    begin
        Result := IOSB.r_io_64.w_status ;
        exit ;
    end ;
    if( RAB.RAB_Size > sizeof( RAB ) ) then
    begin
        RAB.RAB_Size := sizeof( RAB ) ;
    end ;
    Get_User_Data( Kernel, PID, _RAB, RAB.RAB_Size, RAB, IOSB.r_io_64.w_status ) ; // Get RAB
    if( IOSB.r_io_64.w_status <> 0 ) then
    begin
        Result := IOSB.r_io_64.w_status ;
        exit ;
    end ;
This new FIP method handles the actual writing of data to a file. The first thing we do is validate the RAB structure, whose address was passed to us. This mirrors the work done in File_Read, which we covered before.

    // Validate...
    if( not USC.Valid_Handle( PID, RAB.RAB_W_ISI ) ) then
    begin
        Set_Last_Error( Create_Error( UOSErr_Invalid_Handle ) ) ;
        Result := UOSErr_Invalid_Handle ;
        exit ;
    end ;
    if( RAB.RAB_W_USZ = 0 ) then
    begin
        exit ; // No operation
    end ;
    Resource := TResource( RAB.RAB_W_ISI ) ;
    if( ( RAB.RAB_B_RAC = 0 ) or ( RAB.RAB_L_BKT <> 0 ) ) then // Binary I/O or non-zero position
    begin
        Resource.Position := RAB.RAB_L_BKT ;
    end ;
Next we validate the handle and exit if there is an error. Otherwise, we update the file position as per the RAB, like we did in File_Read.

    // Map user buffer into our memory space...
    Offset := MMC.Lock_Pages( PID, RAB.RAB_L_UBF, RAB.RAB_W_USZ ) ;
    try
        Buff := PAnsiChar( MMC.Map_Pages( PID, 0, RAB.RAB_L_UBF, RAB.RAB_W_USZ, MAM_Read or MAM_Lock ) ) ;
        if( Buff = nil ) then
        begin
            if( MMC.Last_Error = nil ) then
            begin
                Generate_Exception( UOSErr_Memory_Address_Error ) ;
            end ;
            exit ;
        end ;

        try
            // Write to the file...
            if( Write_File( RAB.RAB_W_ISI, RAB.RAB_Data_Stream, Buff + Offset, RAB.RAB_W_USZ, 
              RAB.RAB_L_ROP ) <> nil ) then
            begin
                E := USC.Get_Process_Exception( PID ) ;
                Result := E.Get_Error ;
                IOSB.r_io_64.w_status := Result ;
            end ;
        finally
            MMC.UnMap_Pages( 0, RAB.RAB_L_UBF, RAB.RAB_W_USZ ) ;
        end ;
    finally
        MMC.Unlock_Pages( PID, RAB.RAB_L_UBF, RAB.RAB_W_USZ ) ;
    end ;
end ; // TUOS_FiP.File_Write
Next, we map the user's buffer into the kernel's address space and then call Write_File to do the actual write operation. Finally, we unmap the pages containing the user's buffer. Note that it is possible that the write operation may have failed (for instance, due to the file being read-only). In any case, the IOSB result will be set appropriately.

    if( ( Flags and RAB_V_CCO ) <> 0 ) then // Disable Control-O
    begin
        Output_Filter.Flags := Output_Filter.Flags and ( not TOFF_Null ) ;
        _Disable_Ctrl_O := True ;
    end ;
    Result := Output_Filter.Write( S, False, 0, Flags ) ;
    if( ( Flags and RAB_V_CCO ) <> 0 ) then // Re-enable Control-O
    begin
        _Disable_Ctrl_O := False ;
    end ;
One of the flags that can be used for writing to terminals is RAB_V_CCO. This turns off the Control-O feature for the duration of this operation. We wrap the Output_Filter.Write (in TTerminal.Write_Data) with code to handle this flag. Note: this flag is ignored for writes to any device other than terminals.

        if(
            ( ( Flags and TIFF_Binary ) = 0 ) // Cooked input
            and
            ( not Term.Disable_Ctrl_O ) // Control-O not disabled
          ) then
We update the TDefault_Input_Filter.New_Character method to check this flag when processing control-O. The original check for binary mode is replaced by this code.

In the next article, we will look at the next UCL command.

 

Copyright © 2021 by Alan Conroy. This article may be copied in whole or in part as long as this copyright is included.