1 Introduction
2 Ground Rules
Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class
The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up
The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup
Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API
Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O
UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation
UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services
UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN
CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND
Glossary/Index
Downloads
|
PROCESS_SCAN, Part 2
In the previous article, we discussed the TFilter and TContext classes. In this
article, we will look at the PROCESS_SCAN system call which makes use of those
classes.
procedure SYS_PROCESS_SCAN( pidctx, itmlst : int64 ) ;
var Status : byte ;
SysRequest : TInteger2_Request ;
begin
fillchar( SysRequest, sizeof( SysRequest ), 0 ) ;
SysRequest.Request.Subsystem := UOS_Subsystem_USC ;
SysRequest.Request.Request := UOS_USC_Process_Scan ;
SysRequest.Request.Length := sizeof( SysRequest ) - sizeof( TSystem_Request ) ;
SysRequest.Request.Status := integer( @Status ) ;
SysRequest.Int1 := pidctx ;
SysRequest.Int2 := ItmLst ;
Call_To_Ring0( integer( @SysRequest ) ) ;
end ;
This is the interface function in the Sys unit. Process_Scan takes the following
parameters:
Parameter | Description |
pidctx | The address where to write the context value. If the value at this address is an existing context, that context is deleted and a new one is created. |
itmlst | A list of filters for which to create a context. Described later in this article. |
UOS_USC_Process_Scan:
begin
UE := Enter_System_Call( Request, SReq, PID, MMC,
sizeof( TInteger2_Request ) - sizeof( SReq ), Address ) ;
if( UE <> nil ) then
begin
Set_Last_Error( UE ) ;
exit ;
end ;
try
I2_Request := PInteger2_Request( Address ) ;
Process_Scan_Context( PID, I2_Request.Int1, I2_Request.Int2, IOSB ) ;
finally
Exit_System_Call( Request, PID, MMC, sizeof( TItem_Request ) - sizeof( SReq ) ) ;
end ;
end ;
The USC's API method is updated to handle the Process_Scan system call. Nothing
new to comment on here.
procedure TUSC.Process_Scan_Context( PID : TPID ; ContextAdr, Itemlist : int64 ;
var IOSB : TIOSB ) ;
var Address, Base : int64 ;
Context : int64 ;
Filter : TFilter ;
Item_Code : int64 ;
Offset : int64 ;
Process : TProcess ;
Process_Context : TContext ;
Reference_Descriptor : PPSCAN_Reference_Descriptor ;
Value_Descriptor : PPSCAN_Value_Descriptor ;
S : string ;
US : TUOS_String ;
Size, Status : longint ;
SRB : TSRB ;
begin
// Setup...
fillchar( IOSB, sizeof( IOSB ), 0 ) ;
if( ( ContextAdr = 0 ) or ( ItemList = 0 ) ) then // Invalid address
begin
Generate_Exception( UOSErr_Bad_Parameter ) ;
exit ;
end ;
// Get context value...
Context := Get_User_Integer( Kernel, PID, ContextAdr, Status ) ;
if( Status = UE_Error ) then
begin
IOSB.r_io_64.w_status := Status ;
if( MMC.Last_Error = nil ) then
begin
Generate_Exception( UOSErr_Memory_Address_Error ) ;
end ;
exit ;
end ;
The Process_Scan_Context method clears the IOSB and validates that
the context address and item list address are non-zero. Then it gets the context
itself from the user memory. Obviously we exit if there is a problem.
// If context exists, delete it...
Process := Get_Process( PID ) ;
Process.Delete_Context( Context ) ;
// Create process context
Process_Context := TContext.Create ;
If the context already exists, we delete it. In either case, we create a new context.
// Process items...
while( true ) do // Until end of item list...
begin
Offset := MMC.Lock_Pages( PID, ItemList, Sizeof( TJPI_Value_Descriptor ) ) ;
try
Base := MMC.Map_Pages( PID, 0, ItemList, Sizeof( TJPI_Value_Descriptor ), MAM_Read or MAM_Lock ) ;
if( Base = 0 ) then // Couldn't map memory
begin
if( MMC.Last_Error = nil ) then
begin
Create_Error( UOSErr_Memory_Address_Error ) ;
end ;
IOSB.r_io_64.w_status := UE_Error ;
exit ;
end ;
Address := Base + Offset ;
Value_Descriptor := PPSCAN_Value_Descriptor( Address ) ;
Size := sizeof( TPSCAN_Value_Descriptor ) ;
if(
( Value_Descriptor.Code = 0 )
and
( Value_Descriptor.MBO = 0 )
and ( Value_Descriptor.MBMO = 0 )
) then
begin
break ; // Terminator encountered
end ;
if( ( Value_Descriptor.MBMO <> $FFFFFFFF ) or ( Value_Descriptor.MBO <> 1 ) ) then
begin
// Improper descriptor
Generate_Exception( UOSErr_Bad_Parameter ) ;
IOSB.r_io_64.w_status := UE_Error ;
MMC.UnMap_Pages( 0, Address, Size ) ;
Process_Context.Free ;
exit ;
end ;
Now we loop through all of the descriptors passed in the item list. We map the
next descriptor and get its size. If the descriptor's code, MBO, or MBMO fields
are zero, it is the end of the list and we exit.
We need to take a moment to review the Process_Scan descriptors. There are two
types: value descriptors and reference descriptors, although both have the same "prefix".
Here are the definitions:
type TPSCAN_Value_Descriptor = packed record
Code : word ;
MBO : word ; // Must be 1
MBMO : cardinal ; // Must be -1
Value : int64 ;
Flags : int64 ;
end ;
PPSCAN_Value_Descriptor = ^TPSCAN_Value_Descriptor ;
type TPSCAN_Reference_Descriptor = packed record
Code : word ;
MBO : word ; // Must be 1
MBMO : cardinal ; // Must be -1
Length : int64 ;
Address : int64 ;
Flags : int64 ;
end ;
PPSCAN_Reference_Descriptor = ^TPSCAN_Reference_Descriptor ;
If it were up to me, the two structures would be the same length, but we are
following the VMS specification. Both structures contain an item code and flags.
The value structure contains an integer value and the flags. The reference
structure contains an address to a string/buffer and a length to that string. Because the structures
are different sizes, our code is made a little more complicated.
Item_Code := Value_Descriptor.Code ;
if( Is_By_Reference( Item_Code ) ) then // Reference descriptor
begin
// Remap for reference descriptor...
MMC.UnMap_Pages( 0, Address, Size ) ;
MMC.Unlock_Pages( PID, Base, Size ) ;
Size := sizeof( TPSCAN_Reference_Descriptor ) ;
Offset := MMC.Lock_Pages( PID, ItemList, Size ) ;
Base := MMC.Map_Pages( PID, 0, ItemList, Size, MAM_Read or MAM_Lock ) ;
if( Base = 0 ) then // Couldn't map memory
begin
if( MMC.Last_Error = nil ) then
begin
Create_Error( UOSErr_Memory_Address_Error ) ;
end ;
IOSB.r_io_64.w_status := UE_Error ;
MMC.UnMap_Pages( 0, Address, Size ) ;
Process_Context.Free ;
exit ;
end ;
Address := Base + Offset ;
Reference_Descriptor := PPSCAN_Reference_Descriptor( Address ) ;
if( ( Reference_Descriptor.Address < 16 ) or ( Reference_Descriptor.Length = 0 ) ) then
begin
Create_Error( UOSErr_Bad_Parameter ) ;
IOSB.r_io_64.w_status := UE_Error ;
MMC.UnMap_Pages( 0, Address, Size ) ;
Process_Context.Free ;
exit ;
end ; // if( Reference_Descriptor.Address = 0 )
SRB.Buffer := Reference_Descriptor.Address ;
SRB.Length := Reference_Descriptor.Length ;
SRB.Flags := 0 ;
US := Get_User_String( Kernel, PID, SRB, IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status = UE_Error ) then
begin
MMC.UnMap_Pages( 0, Address, Size ) ;
Process_Context.Free ;
if( US <> nil ) then
begin
US.Free ;
end ;
exit ;
end ;
S := As_UTF8( US ) ;
US.Free ;
Filter := TFilter.Create ;
Filter.Selection_Criteria := Item_Code ;
Filter.Value := S ;
Filter.Qualifier := Reference_Descriptor.Flags ;
end else
First we grab the item code from the descriptor. Remember, the first part of both
types of descriptor are identical, so it won't matter if we have cast a reference
descriptor as a value descriptor for the moment. The next thing we do is see if
the item code indicates a reference descriptor. If so, we unmap the user memory
and then remap it appropriately for the size of a reference descriptor. Then we
map a reference descriptor and set Size to match this descriptor's size.
We do a quick validation on the address and length. Length 0 is not allowed an
any memory address less than 16 is assumed to be an error. If that validation
fails we return an error and exit. Note that if the memory address is wrong, the
attempt to map the memory will probably also generate an error. But we do this
extra check in the hopes of returning a more meaningful error (bad parameter) than
otherwise (invalid memory access).
Next we construct an SRB structure from the address and length in the descriptor
so we can use the Get_User_String function to get the string value
from the user memory, exiting if there was an error. The As_UTF8 function simply
takes a UOS string and places it in a Pascal string variable as is. "As_UTF" indicates
that we are treating the data as an UTF8 format and doing no processing on it
(essentially treating it as binary data). The we create a filter and fill the fields
appropriate from the descriptor and string we fetched from the user memory.
begin
Filter := TFilter.Create ;
Filter.Selection_Criteria := Item_Code ;
Filter.ValueI := Value_Descriptor.Value ;
Filter.Qualifier := Value_Descriptor.Flags ;
end ; // if
If the descriptor is a value descriptor, we simply create a filter and set the
appropriate values.
if( ( Filter.Qualifier and PSCAN_M_COMPARISON_MASK ) > PSCAN_M_NEQ ) then
begin
MMC.UnMap_Pages( 0, Address, Size ) ;
Filter.Free ;
Process_Context.Free ;
Generate_Exception( UOSErr_Bad_Parameter ) ;
exit ;
end ;
Process_Context.Filters.Add( Filter ) ;
MMC.UnMap_Pages( 0, Address, Size ) ;
finally
MMC.Unlock_Pages( PID, Base, Size ) ;
end ;
ItemList := ItemList + Size ; // Move to next descriptor
end ; // while( true )
VMS implements the comparison flags as individual flags, which allows such nonsense
as PSCAN_M_EQL or PSCAN_M_NEQ . If VMS detects these conflicting flags,
it returns an error. However, UOS implements the comparison values as a bit field
which can be masked out of the qualifier value. Thus there cannot be weird
comparison combinations. Oring the flags on UOS might result in an unintended
comparison, but they are still valid. There exception being that the comparison
mask is large enough for eight different values, but only six possible values are
defined. So, we do check for a value that is out of range. If it is, we free
the filter and context and return an error.
Finally, we add the filter to the context, unmap the user memory, increment the
item list pointer, and then loop back for the next descriptor.
// Write context value back...
Process.Add_Context( Process_Context ) ;
Write_User_int64( Kernel, PID, ContextAdr, integer( Process_Context ) or 1 ) ;
if( Status = UE_Error ) then
begin
IOSB.r_io_64.w_status := Status ;
if( MMC.Last_Error = nil ) then
begin
Generate_Exception( UOSErr_Memory_Address_Error ) ;
end ;
exit ;
end ;
end ; // TUSC.Process_Scan_Context
Once we run out of descriptors, we exit the loop and then we add the new context
object to the process. Then we write the context to the user's memory at the
location they specified. Note that we set the lowest bit of the context address
(or 1 ) as we discussed in the previous article.
If trying to write to the user address fails and no error is already set, we set
an exception.
In the next article we will review changes to the TProcess class.
After that, we'll have an article revisiting Unicode, and then move on to lexical
functions that make use of the Process_Scan system call.
Copyright © 2019 by Alan Conroy. This article may be copied
in whole or in part as long as this copyright is included.
|