1 Introduction
2 Ground Rules
Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class
The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up
The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup
Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API
Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O
UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation
UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services
UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN
CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND
Glossary/Index
Downloads
|
Hardware and Device Lists
In this article, we are going to look at the hardware options. Here is the code in the main input list:
if( Match( 'HARDWARE', S, 3 ) ) then
begin
Do_Hardware( S1 ) ;
end else
Here is the Do_Hardware function that serves as the input loop for hardware mode:
function Do_Hardware( S : string ) : boolean ;
var Dummy : integer ;
S1 : string ;
Prompt : boolean ;
begin
Result := False ;
Prompt := S = '' ;
while( True ) do
begin
if( Prompt ) then
begin
Output( 'Hardware> ' ) ;
S := Input( '' ) ;
end ;
if( S = #3 ) then
begin
Result := True ;
exit ;
end ;
if( ( S = ESC ) or ( S = #26 ) ) then
begin
exit ;
end ;
S := Edit( S, 4 or 8 or 32 or 128 ) ;
if( S = '' ) then
begin
continue ;
end ;
Dummy := pos( ' ', S + ' ' ) ;
S1 := copy( S, Dummy + 1, length( S ) ) ;
S := copy( S, 1, Dummy - 1 ) ;
if( ( S = '?' ) or Match( 'HELP', S, 1 ) ) then
begin
Output_Line( 'DEVICE - Manage devices' ) ;
Output_Line( 'HELP - Show this text' ) ;
Output_Line( 'MEMORY - Manage memory' ) ;
Output_Line( '' ) ;
end else
if( Match( 'DEVICE', S, 1 ) ) then
begin
if( Hardware_Device( S1 ) ) then
begin
exit ;
end ;
end else
if( Match( 'MEMORY', S, 1 ) ) then
begin
if( Hardware_Memory( S1 ) ) then
begin
exit ;
end ;
end else
if( S <> '' ) then
begin
Output_Line( 'Invalid Hardware command' ) ;
end ;
if( not Prompt ) then
begin
exit ;
end ;
end ; // while( True )
end ; // Do_Hardware
For now, we will support managing devices and memory.
Here is the input loop for the Hardware memory command loop:
function Hardware_Memory( S : string ) : boolean ;
var Dummy : integer ;
S1 : string ;
Prompt : boolean ;
begin
Result := False ;
Prompt := S = '' ;
while( True ) do
begin
if( Prompt ) then
begin
Output( 'Hardware memory> ' ) ;
S := Input( '' ) ;
end ;
if( S = #3 ) then
begin
Result := True ;
exit ;
end ;
if( ( S = ESC ) or ( S = #26 ) ) then
begin
exit ;
end ;
S := Edit( S, 4 or 8 or 32 or 128 ) ;
if( S = '' ) then
begin
continue ;
end ;
Dummy := pos( ' ', S + ' ' ) ;
S1 := copy( S, Dummy + 1, length( S ) ) ;
S := copy( S, 1, Dummy - 1 ) ;
if( ( S = '?' ) or Match( 'HELP', S, 1 ) ) then
begin
Output_Line( 'HELP - Show this text' ) ;
Output_Line( 'LIST - List memory' ) ;
Output_Line( '' ) ;
end else
if( Match( 'LIST', S, 1 ) ) then
begin
if( Hardware_Memory_List( S1 ) ) then
begin
exit ;
end ;
end else
if( S <> '' ) then
begin
Output_Line( 'Invalid subcommand' ) ;
end ;
if( not Prompt ) then
begin
exit ;
end ;
end ; // while( True )
end ; // Hardware_Memory
At this point, we only support the LIST sub-command.
The Memory list simply shows the layout of memory. On some computers, the available memory may not be contiguous, and some of it may be read-only. As a consequence, the HAL may return multiple segments of memory, each with its own range of addresses and characteristics. So this routine loops through all the segments of memory returned by the HAL and displays them.
function Hardware_Memory_List( S : string ) : boolean ;
var Index : integer ;
Info : TMemory_Info ;
Last, Size : int64 ;
begin // Hardware_Memory_List
Result := False ;
Last := 0 ;
Index := 0 ;
Info := HAL.Memory( Index ) ;
while( Info.Memory_Type <> MT_Non_Existant ) do
begin
if( Info.Low > Last ) then
begin
S := Build_Range( Last, Info.Low - 1 ) ;
Output_Line( 'NXT ' + S ) ;
end ;
S := Build_Range( Info.Low, Info.High ) ;
case Info.Memory_Type of
MT_RAM : Output( 'RAM ' ) ;
MT_ROM : Output( 'ROM ' ) ;
MT_WOM : Output( 'WOM ' ) ;
end ; // case Info.Device_Type
Size := Info.High - Info.Low + 1 ;
Output( S ) ;
S := Abbreviate_Size( Size ) ;
Output_Line( ' ' + S ) ;
Last := Info.High + 1 ;
inc( Index ) ;
Info := HAL.Memory( Index ) ;
end ; // while( Info.Device_Type <> DT_Non_Existant )
end ; // Hardware_Memory_List
The HAL Memory method returns the following record:
type TMemory_Info = packed record
Memory_Type : word ; // See MT_*
Low : int64 ;
High : int64
end ;
The Memory type values are as follows:
Mnuemonic | Value | Description |
MT_Non_Existant | 0 | Indicates the index is out of range |
MT_RAM | 1 | R/W memory |
MT_ROM | 2 | Read-only memory |
MT_WOM | 3 | Write-only memory |
The local Build_Range function formats memory ranges as strings. It shows the range of addresses in decimal and in the default base for the machine (if it differs from decimal). The HAL indicates the default base for the hardware. For instance, PDP-11s use a base of 8 (octal). Most modern hardware use a base of 16 (hexadecimal). When I say that the hardware "uses" a given base, it has to do with how the manufacturer's documentation represents data and address values.
Here is the input loop for the hardware device command.
function Hardware_Device( S : string ) : boolean ;
var Dummy : integer ;
S1 : string ;
Prompt : boolean ;
begin
Result := False ;
Prompt := S = '' ;
while( True ) do
begin
if( Prompt ) then
begin
Output( 'Hardware device> ' ) ;
S := Input( '' ) ;
end ;
if( S = #3 ) then
begin
Result := True ;
exit ;
end ;
if( ( S = ESC ) or ( S = #26 ) ) then
begin
exit ;
end ;
S := Edit( S, 4 or 8 or 32 or 128 ) ;
if( S = '' ) then
begin
continue ;
end ;
Dummy := pos( ' ', S + ' ' ) ;
S1 := copy( S, Dummy + 1, length( S ) ) ;
S := copy( S, 1, Dummy - 1 ) ;
if( ( S = '?' ) or Match( 'HELP', S, 1 ) ) then
begin
Output_Line( 'HELP - Show this text' ) ;
Output_Line( 'LIST - List devices' ) ;
Output_Line( '' ) ;
end else
if( Match( 'LIST', S, 1 ) ) then
begin
if( Hardware_Device_List( S1 ) ) then
begin
exit ;
end ;
end else
if( S <> '' ) then
begin
Output_Line( 'Invalid Hardware command' ) ;
end ;
if( not Prompt ) then
begin
exit ;
end ;
end ; // while( True )
end ; // Hardware_Device
For now, all we do is list the devices. Here is the device list code:
function Hardware_Device_List( S : string ) : boolean ;
var Index : integer ;
Info : TDevice_Info ;
Store : TCOM_Store64 ;
begin
Result := False ;
Index := 0 ;
Info := HAL.Device( Index ) ;
while( Info.Device_Type <> DT_Non_Existant ) do
begin
S := inttostr( Info.Device_Unit ) ;
while( length( S ) < 3 ) do
begin
S := S + ' ' ;
end ;
S := chr( 65 + Info.Controller ) + S ;
case Info.Device_Type of
DT_Unknown : Output( ' ' + S + ' unknown ' ) ;
DT_Serial :
begin
Output( 'TERM' + S + ' serial ' ) ;
end ;
DT_Store :
begin
Output( 'DISK' + S + ' store ' ) ;
if( Info.Media_Present ) then
begin
Store := HAL.Store( Index ) ;
S := inttostr( Store.Max_Storage ) ;
while( length( S ) < 12 ) do
begin
S := ' ' + S ;
end ;
Output( S ) ;
if( Store.Read_Only ) then
begin
Output( ' Read-only' ) ;
end ;
if( Store.Write_Only ) then
begin
Output( ' Write-only' ) ;
end ;
end else
begin
Output( 'media not present' ) ;
end ;
end ;
end ; // case Info.Device_Type
Output_Line( '' ) ;
inc( Index ) ;
Info := HAL.Device( Index ) ;
end ; // while( Info.Device_Type <> DT_Non_Existant )
end ; // Hardware_Device_List
This loops through the HAL devices, as we did in the code we discussed in the previous article, and then displays the list.
Before moving on, we will go back to the disk commands and cover the disk CLONE command. This allows us to do a sector-by-sector copy from one disk to another.
function Disk_Clone( Command : string ) : boolean ;
var Dummy : integer ;
Prompt : boolean ;
Store : TCOM_Store64 ;
S, S1 : string ;
begin // Disk_Clone
Prompt := Command = '' ;
Result := False ;
while( true ) do
begin
// Query user for disk...
if( Command = '' ) then
begin
Output( 'Disk clone (DISKA0) > ' ) ;
S := Input( 'DISKA0' ) ;
end else
begin
S := Command ;
end ;
if( S = #3 ) then
begin
Result := True ;
exit ;
end ;
if( ( S = ESC ) or ( S = #26 ) ) then
begin
exit ;
end ;
S := Edit( S, 4 or 8 or 32 or 128 ) ;
Dummy := pos( ' ', S + ' ' ) ;
S1 := copy( S, Dummy + 1, length( S ) ) ;
S := copy( S, 1, Dummy - 1 ) ;
if( S = '' ) then
begin
continue ;
end ;
if( ( S = '?' ) or Match( 'HELP', S, 1 ) ) then
begin
Output_Line( '<disk1> <disk2> - source and target disks' ) ;
Output_Line( 'HELP - Show this text' ) ;
Output_Line( '' ) ;
end else
begin
Store := Parse_Device( S ) ;
if( Store <> nil ) then
begin
if( Disk_Clone_Device( Store, S, S1 ) ) then
begin
Result := True ;
exit ;
end ;
end ;
end ;
if( not Prompt ) then
begin
exit ;
end ;
end ; // while( True )
end ; // Disk_Clone
This function is the main input loop for the clone command. It parses the source device and calls the actual clone routine.
function Disk_Clone_Device( Store : TCOM_Store64 ; St, Command : string ) : boolean ;
var Buffer : PChar ;
Current, Max, Percent : int64 ;
Index : TStore_Address64 ;
Prompt : boolean ;
S : string ;
Saved : integer ;
Siz, Typ : longint ;
Store1 : TCOM_Store64 ;
U : TUnified_Exception ;
begin // Disk_Clone
Prompt := Command = '' ;
Result := False ;
while( true ) do
begin
// Query user for disk...
if( Command = '' ) then
begin
Output( 'Disk clone ' + St + ' (DISKA1) > ' ) ;
S := Input( 'DISKA1' ) ;
end else
begin
S := Command ;
end ;
if( S = #3 ) then
begin
Result := True ;
exit ;
end ;
if( ( S = ESC ) or ( S = #26 ) ) then
begin
exit ;
end ;
S := Edit( S, 4 or 8 or 32 or 128 ) ;
if( S = '' ) then
begin
continue ;
end ;
if( ( S = '?' ) or Match( 'HELP', S, 1 ) ) then
begin
Output_Line( '<disk> - target disks' ) ;
Output_Line( 'HELP - Show this text' ) ;
Output_Line( '' ) ;
end else
begin
Store1 := Parse_Device( S ) ;
if( Store1 <> nil ) then
begin
if( Store = Store1 ) then
begin
Output_Line( 'Cannot clone a disk to itself' ) ;
end else
if(
( Store.Max_Storage <> Store1.Max_Storage )
or
( Store.Min_Storage <> Store1.Min_Storage )
) then
begin
Output_Line( 'Incompatible disks' ) ;
end else
begin
Output( 'Any existing data on ' + S + ' will be lost. Continue? <NO> ' ) ;
S := Input( 'NO' ) ;
if( copy( S, 1, 1 ) = 'Y' ) then
begin
Index := 0 ;
Max := Store.Max_Storage div Store.Min_Storage div 100 ; // 1% of the copy
Current := Max ;
Percent := 0 ;
Buffer := allocmem( Store.Min_Storage ) ;
try
while( Index < Store.Max_Storage ) do
begin
if( Keyboard.Peek = #3 ) then
begin
Keyboard.Input_Line ; // Swallow the ^C
Output_Line( '' ) ;
Result := True ;
exit ;
end ;
dec( Current ) ;
if( Current <= 0 ) then
begin
Current := Max ;
inc( Percent ) ;
case Percent of
10,20,30,40,50,60,70,80,90 : Output( inttostr( Percent ) + '%' ) ;
5,15,25,35,45,55,65,75,85,95 : Output( '.' ) ;
end ;
end ;
Store.Read_Data( Buffer^, Index, Store.Min_Storage, U ) ;
if( U <> nil ) then
begin
Output_Line( U.Error_Text( Siz, Typ ) ) ;
end ;
Store1.Write_Data( Buffer^, Index, Store.Min_Storage, U ) ;
if( U <> nil ) then
begin
Output_Line( U.Error_Text( Siz, Typ ) ) ;
end ;
Index := Index + Store.Min_Storage ;
end ; // while( Index < Store.Max_Storage )
finally
freemem( Buffer ) ;
end ;
Output_Line( '100%' ) ;
end ; // if( copy( S, 1, 1 ) = 'Y' )
end ; // if
end ; // if( Store1 <> nil )
end ; // if
if( not Prompt ) then
begin
exit ;
end ;
end ; // while( True )
end ; // Disk_Clone_Device
The function gets the target disk, and verifies that it is a valid disk. It then makes sure that the source and target disks are not the same. Finally, it makes sure that the disk sizes and sector sizes are identical (otherwise a clone is not possible). The process displays status as the copy occurs, which is especially useful for very large disks.
In the next article, we will discuss disk partitions.
|
Copyright © 2016 by Alan Conroy. This article may be copied
in whole or in part as long as this copyright is included.