1 Introduction
2 Ground Rules
Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class
The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up
The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup
Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API
Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O
UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation
UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services
UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN
CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND
Glossary/Index
Downloads
|
The Data Stream Interface
Although we introduced data streams many articles ago (at least in terms of the UOS native file header
structures and low-level code), in the last article we started
to use them. So it is time to discuss the the data stream interface - at least
reading them. We will cover writing to them in the future.
function TUOS_File_Wrapper.Stream_Index( Value : PChar ) : int64 ;
var Name : string ;
SRB : TSRB ;
begin
Result := -1 ; // Assume failure
Name := Value ;
Name := trim( Name ) ;
if( Name = '' ) then
begin
Result := 0 ; // Data stream
exit ;
end ;
SYS_GETSTREAMINDEX( int64( @FAB ), int64( @SRB ), int64( @Result ) ) ;
end ;
function TUOS_File_Wrapper.Stream_Length( Stream : int64 ) : int64 ;
begin
SYS_GETSTREAMLENGTH( int64( @FAB ), int64( @Stream ), int64( @Result ) ) ;
end ;
function TUOS_File_Wrapper.Read_Stream( Stream, Position, Size,
Dst : int64 ) : int64 ;
var RAB : TRAB ;
begin
fillchar( RAB, sizeof( RAB ), 0 ) ;
RAB.RAB_Size := sizeof( RAB ) ;
RAB.RAB_L_BKT := Position ;
RAB.RAB_W_ISI := FAB.FAB_Q_HANDLE ;
RAB.RAB_L_UBF := Dst ; // User buffer address
RAB.RAB_W_USZ := Size ; // Bytes to read
RAB.RAB_Data_Stream := Stream ;
SYS_READ( int64( @RAB ), 0, 0 ) ;
Result := RAB.RAB_W_RSZ ; // Bytes actually read
end ;
These three methods are added to the TUOS_File_Wrapper class. Like most
other methods of the class, these simply wrap the appropriate system calls. The Read_Stream
method is nearly identical to the Read method we've covered in the past.
The only difference is that Read passes 0 in the RAB_Data_Stream
field of the RAB, whereas Read_Stream passes the specified stream.
function SYS_GETSTREAMINDEX( FAB, SRB, Dst : int64 ) : int64 ;
var Status : int64 ;
SysRequest : TS1I2_Request ;
begin
if( FAB = 0 ) then
begin
Result := RMS_FAB ;
exit ;
end ;
Status := 0 ;
fillchar( SysRequest, sizeof( SysRequest ), 0 ) ;
SysRequest.Request.Subsystem := UOS_Subsystem_FIP ;
SysRequest.Request.Request := UOS_FIP_Get_Stream_Index ;
SysRequest.Request.Length := sizeof( SysRequest ) - sizeof( TSystem_Request ) ;
SysRequest.Request.Status := integer( @Status ) ;
SysRequest.SRB := PSRB( SRB )^ ;
SysRequest.Integer1 := FAB ;
SysRequest.Integer2 := Dst ;
Call_To_Ring0( integer( @SysRequest ) ) ;
Result := Status ;
end ;
function SYS_GETSTREAMLENGTH( FAB, Stream, Dst : int64 ) : int64 ;
var Status : int64 ;
SysRequest : TInteger3_Request ;
begin
if( FAB = 0 ) then
begin
Result := RMS_FAB ;
exit ;
end ;
Status := 0 ;
fillchar( SysRequest, sizeof( SysRequest ), 0 ) ;
SysRequest.Request.Subsystem := UOS_Subsystem_FIP ;
SysRequest.Request.Request := UOS_FIP_Get_Stream_Length ;
SysRequest.Request.Length := sizeof( SysRequest ) - sizeof( TSystem_Request ) ;
SysRequest.Request.Status := integer( @Status ) ;
SysRequest.Int1 := FAB ;
SysRequest.Int2 := Stream ;
SysRequest.Int3 := Dst ;
Call_To_Ring0( integer( @SysRequest ) ) ;
Result := Status ;
end ;
These additions to the SYS unit are wrappers to the executive services, like the other
routines we've looked at in the past.
UOS_FIP_Get_Stream_Index:
begin
UE := Enter_System_Call( Request, SReq, PID, MMC,
sizeof( S1I2_Request ) - sizeof( SReq ), Address ) ;
if( UE <> nil ) then
begin
Set_Last_Error( UE ) ;
exit ;
end ;
try
S1I2_Request := PS1I2_Request( Address ) ;
Status := File_Get_Stream_Index( S1I2_Request.Integer1,
S1I2_Request.SRB, S1I2_Request.Integer2, IOSB ) ;
Write_User_int64( Kernel, PID, S1I2_Request.Request.Status,
IOSB.r_io_64.r_bcnt_32.l_bcnt ) ;
finally
Exit_System_Call( integer( S1I2_Request ), PID, MMC,
sizeof( S1I2_Request ) - sizeof( SReq ) ) ;
end ;
end ;
UOS_FIP_Get_Stream_Length:
begin
UE := Enter_System_Call( Request, SReq, PID, MMC,
sizeof( Integer3_Request ) - sizeof( SReq ), Address ) ;
if( UE <> nil ) then
begin
Set_Last_Error( UE ) ;
exit ;
end ;
try
Integer3_Request := PInteger3_Request( Address ) ;
Status := File_Get_Stream_Length( Integer3_Request.Int1,
Integer3_Request.Int2, Integer3_Request.Int3, IOSB ) ;
Write_User_int64( Kernel, PID, Integer3_Request.Request.Status,
IOSB.r_io_64.r_bcnt_32.l_bcnt ) ;
finally
Exit_System_Call( integer( Integer3_Request ), PID, MMC,
sizeof( Integer3_Request ) - sizeof( SReq ) ) ;
end ;
end ;
This code is added to the FiP's API method to handle the two new services.
function TUOS_FiP.File_Get_Stream_Index( _FAB : int64 ; Name : TSRB ;
Dst : int64 ; var IOSB : TIOSB ) : int64 ;
var FAB : TFAB ;
Index : int64 ;
SName : string ;
PID : TPID ;
Resource : TResource ;
US : TUOS_String ;
begin
// Initial check...
Result := 0 ;
if( _FAB = 0 ) then
begin
Result := RMS_FAB ;
IOSB.r_io_64.w_status := Result ;
exit ;
end ;
// Get the FAB...
fillchar( FAB, sizeof( FAB ), 0 ) ;
PID := Kernel.PID ;
Get_User_Data( Kernel, PID, _FAB, 2, FAB, IOSB.r_io_64.w_status ) ; // Get RAB length
if( IOSB.r_io_64.w_status <> 0 ) then
begin
Result := IOSB.r_io_64.w_status ;
exit ;
end ;
if( FAB.FAB_B_BLN > sizeof( FAB ) ) then
begin
FAB.FAB_B_BLN := sizeof( FAB ) ;
end ;
Get_User_Data( Kernel, PID, _FAB, FAB.FAB_B_BLN, FAB, IOSB.r_io_64.w_status ) ; // Get FAB
if( IOSB.r_io_64.w_status <> 0 ) then
begin
Result := IOSB.r_io_64.w_status ;
exit ;
end ;
This method starts by obtaining and validating the FAB. We've seen similar code in
other routines in the past.
// Validate...
if( not USC.Valid_Handle( PID, FAB.FAB_Q_HANDLE ) ) then
begin
Set_Last_Error( Create_Error( UOSErr_Invalid_Handle ) ) ;
Result := UOSErr_Invalid_Handle ;
exit ;
end ;
if( USC.Check_Quota( PID, Quota_BIOLM, 1 ) ) then
begin
Result := UOSErr_Quota_Exceeded ;
Set_Last_Error( Create_Error( UOSErr_Quota_Exceeded ) ) ;
exit ;
end ;
Next we validate that the handle is valid for the process and check this read requests
against the Buffered I/O quota.
// Get name...
US := Get_User_String( Kernel, PID, Name, IOSB.r_io_64.w_status ) ;
if( IOSB.r_io_64.w_status = UE_Error ) then
begin
Result := IOSB.r_io_64.w_status ;
exit ;
end ;
SName := US.Contents ;
US.Free ;
// Get file...
Resource := TResource( FAB.FAB_Q_HANDLE ) ;
if( Resource._File = nil ) then // Only files have streams
begin
Result := UOSErr_Invalid_Operation ;
Set_Last_Error( Create_Error( UOSErr_Invalid_Operation ) ) ;
exit ;
end ;
// Return value...
Index := Resource._File.Stream_Index( PChar( SName ) ) ;
Result := Write_User_int64( Kernel, PID, Dst, Index ) ;
end ; // TUOS_FiP.File_Get_Stream_Index
Next we obtain the stream name from the user address space, get the resource and validate
that this is a store file (no other files have ancillary data streams). Assuming
we don't exit with an error, we ask the file for the stream index for the passed name
and write the result to the user-specified destination.
function TUOS_FiP.File_Get_Stream_Length( _FAB, _Stream, Dst : int64 ;
var IOSB : TIOSB ) : int64 ;
var FAB : TFAB ;
I : integer ;
Index, Len : int64 ;
PID : TPID ;
Resource : TResource ;
begin
// Initial check...
Result := 0 ;
if( _FAB = 0 ) then
begin
Result := RMS_FAB ;
IOSB.r_io_64.w_status := Result ;
exit ;
end ;
// Get the FAB...
fillchar( FAB, sizeof( FAB ), 0 ) ;
PID := Kernel.PID ;
Get_User_Data( Kernel, PID, _FAB, 2, FAB, IOSB.r_io_64.w_status ) ; // Get RAB length
if( IOSB.r_io_64.w_status <> 0 ) then
begin
Result := IOSB.r_io_64.w_status ;
exit ;
end ;
if( FAB.FAB_B_BLN > sizeof( FAB ) ) then
begin
FAB.FAB_B_BLN := sizeof( FAB ) ;
end ;
Get_User_Data( Kernel, PID, _FAB, FAB.FAB_B_BLN, FAB, IOSB.r_io_64.w_status ) ; // Get FAB
if( IOSB.r_io_64.w_status <> 0 ) then
begin
Result := IOSB.r_io_64.w_status ;
exit ;
end ;
Index := Get_User_Integer( Kernel, PID, _Stream, I ) ;
if( I <> 0 ) then
begin
Result := I ;
exit ;
end ;
// Get file...
Resource := TResource( FAB.FAB_Q_HANDLE ) ;
if( Resource._File = nil ) then // Only files have streams
begin
Result := UOSErr_Invalid_Operation ;
Set_Last_Error( Create_Error( REsult ) ) ;
exit ;
end ;
This method starts like the previous one, getting and verifying the FAB and resource.
It also obtains the stream index from the user's address space.
// Return value...
Len := Resource._File.Get_Stream_Size( Index ) ;
Result := Write_User_int64( Kernel, PID, Dst, Len ) ;
end ; // TUOS_FiP.File_Get_Stream_Length
Finally, we request the data stream size and write it to the user's specified destination.
if(
( RAB.RAB_B_RAC = 0 )
or
( RAB.RAB_L_BKT <> 0 )
or
( RAB.RAB_Data_Stream > 0 ) // NEW (this line only)
) then // Binary I/O or non-zero position or stream read
begin
Resource.Position := RAB.RAB_L_BKT ;
end ;
// Read the file...
S := Read_File( RAB.RAB_W_ISI, RAB.RAB_Data_Stream, RAB.RAB_W_USZ, 0, IOSB ) ;
if( RAB.RAB_Data_Stream = 0 ) then // NEW (if)
begin
Resource.Position := Resource.Position + length( S ) ;
end ;
We've made a couple minor, but important, modifications to the TUOS_FiP.File_Read method.
The lines with the "// NEW" comments are the additions. These changes support data
streams. Previously assumptions were made that the only stream being read was the
default data stream. We don't keep track of position for ancillary streams - that is
reserved for the default data stream.
function TFS_File.Stream_Index( Name : PChar ) : integer ;
var ACM : TNative_File_ACM ;
Index : integer ;
N : string ;
begin
Result := -1 ; // Assume failure
N := lowercase( string( Name ) ) ;
for Index := 1 to Max_Stream do
begin
ACM := Find_Data_Stream( Index ) ;
if( lowercase( FS.Get_String( ACM.Name ) ) = Name ) then
begin
Result := Index ; // Found stream with a matching name
exit ;
end ;
end ;
end ;
This method has been added to the TFS_File class to return the index
for a data stream with the specified name. It merely iterates through the data streams,
does a case-insensitive comparison and returns the index if a match is found. Otherwise
it returns -1.
.
.
.
if( ACM.Index = 0 ) then
begin
EOF := Header.EOF ;
end else
begin
EOF := Get_Size( ACM ) ;
end ;
.
.
.
if( ( ( Header.Flags and FAF_CONTIGUOUS ) <> 0 ) and ( ACM.Index = 0 ) ) then
begin
P := Header.Clusters[ 0 ] + Position ;
P := P and ( Clustersize - 1 ) ;
end else
.
.
.
These changes to TUOS_Native_File._Read also support streams. As was
mentioned, a logical size is not saved for ancillary data streams, so we cannot compare
against the Header.EOF field, which is the logical size of the default
data stream. Instead, we compare against the stream's physical size. Also ancillary
data streams are not logically contiguous, so we only check the contiguous flag if
the stream in quesstion is the default data stream (ACM.Index = 0 ).
In the next article, we will look at the processing necessary to prepare for running
a program.
Copyright © 2021 by Alan Conroy. This article may be copied
in whole or in part as long as this copyright is included.
|