1 Introduction
2 Ground Rules

Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class

The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up

The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup

Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API

Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O

UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation

UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services

UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN

CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND

Glossary/Index


Downloads

Lexical Functions: F$CUNITS

VMS dealt with allocations on storage by "blocks", which were essentially sectors on the disks. The hardware used by VMS had a block size of 512 bytes. F$CUNITS was provided to convert from a number of blocks to a number of bytes. This has little use on UOS, but for the sake of compatibility, we will implement it as well.

Here is the description of the function:
F$CUNITS converts a number from one specified unit of measure to another.

Format
F$CUNITS(number {,from, to})

Return Value
The converted value. If the value is greater than 1,000, the value is adjusted and suffixed with "KB", "MB, "GB", or "TB".

Arguments
number
Specifies a 64-bit (or smaller) integer value to convert.

from
Optional unit of measure from which to convert. The only supported option for this field is "BLOCKS".

to
Optional unit of measure to which to convert. The only supported option for this field is "BYTES".

Example
$ A = F$CUNITS(100, "BLOCKS", "BYTES")
This example converts 100 blocks to the equivalent number of bytes. The result is "51.2KB".

        Function_Cunits : begin
                              if( Missing_Parentheses( '(' ) ) then
                              begin
                                  exit ;
                              end ;
                              if( Parse_CUnits( Err, Context ) ) then
                              begin
                                  exit ;
                              end ;
                              if( Missing_Parentheses( ')' ) ) then
                              begin
                                  exit ;
                              end ;
                              S := Context ; 
                          end ;
We've added another case the the case statement in Function_Reference. Like previous lexical functions, this simply ensures parentheses and calls the function to process them - in this case, the Parse_CUnits function.

const KB = $400 ; // 1024
const MB = $100000 ; // 1048576
const GB = $40000000 ; // 1073741824
const TB = $10000000000 ; // 1024 * GB

function Parse_CUnits( var Err : integer ; var Context : string ) : boolean ;

var N : int64 ;
    S, Suffix : string ;

begin
    Result := False ; // Assume no problems
    Err := 0 ;
    Context := '' ;
    N := Get_Numeric_Parameter( Err, Context ) ;
    if( Err <> 0 ) then
    begin
        Result := True ;
        exit ;
    end ;
We start with some useful constants. The Parse_CUnits function returns True if there was an error. It also returns an error code and context. First, we clear Err and Context then get the next parameter, exiting if there was an error. We discuss the Get_Numeric_Parameter at the end of the article.

    if( Parser.Peek <> ')' ) then
    begin
        Result := Missing_Comma( Err ) ;
        if( Result ) then
        begin
            exit ;
        end ;
        S := lowercase( Get_Parameter( Err, Context ) ) ;
        if( Err <> 0 ) then
        begin
            Result := True ;
            exit ;
        end ;
        if( S <> 'blocks' ) then
        begin
            Result := True ;
            Err := UCL_IVKEYW ; // Unrecognized keyword
            Context := S ;
            exit ;
        end ;
        if( Parser.Peek <> ')' ) then
        begin
            Result := Missing_Comma( Err ) ;
            if( Result ) then
            begin
                exit ;
            end ;
            S := lowercase( Get_Parameter( Err, Context ) ) ;
            if( Err <> 0 ) then
            begin
                Result := True ;
                exit ;
            end ;
            if( S <> 'bytes' ) then
            begin
                Result := True ;
                Err := UCL_IVKEYW ; // Unrecognized keyword
                Context := S ;
                exit ;
            end ;
        end ; // if( Parser.Peek <> ')' )
    end ; // if( Parser.Peek <> ')' )
Because the second and third parameters are optional, we peek at the next token to see if it is a closing parenthesis or not. If not, we assume at least one more parameter and get the command and then the parameter. Such parameter must be "blocks". Then we check again for a closing parenthesis. If not, we check for a comma, and then for the last parameter, which must be "bytes".

    N := N * 512 ; // Blocks to bytes

    // Determine suffix
    Suffix := '' ;
    if( N >= TB ) then // Tb
    begin
        if( N < $7FFFFFFFFFFFFFFF - 512 ) then // Only if no overflow
        begin
            N := N + 512 ;
        end ;
        N := N div 1024 ; // Convert to Gb
        N := ( N + 512 ) div 1024 ; // Convert to Mb
        N := ( N + 512 ) div 1024 ; // Convert to Kb
        N := N + 5 ;
        N := N div 10 ;
        S := inttostr( N ) ;
        Suffix := 'TB' ;
    end else
    if( N >= GB ) then // Gb
    begin
        N := ( N + 512 ) div 1024 ; // Convert to Mb
        N := ( N + 512 ) div 1024 ; // Convert to Kb
        N := N + 5 ;
        N := N div 10 ;
        S := inttostr( N ) ;
        Suffix := 'GB' ;
    end else
    if( N >= MB ) then // Mb
    begin
        N := ( N + 512 ) div 1024 ; // Convert to Kb
        N := N + 5 ;
        N := N div 10 ;
        S := inttostr( N ) ;
        Suffix := 'MB' ;
    end else
    if( N >= KB ) then // Kb
    begin
        N := N + 5 ;
        N := N div 10 ;
        S := inttostr( N ) ;
        Suffix := 'KB' ;
    end else
    begin
        S := inttostr( N ) ;
    end ;
Next, we convert from blocks to bytes by multiplying N by 512. We assume no suffix by default. If the value is greater than or equal to 1 terabyte, we divide by 1024 three times. We precede each divsion by the addition of 512 which serves to round the value up - otherwise the division would effectively round down. The first case is special though. If adding 512 to the value would cause the integer value to overflow and become negative, we don't add the 512 for rounding purposes, since we don't want the value to go negative and by definition it is already rounded up. Finally we add 5 for rounding purposes, and then divide by 10. This gives us a value between 100 and 102399. There is an implied decimal place before the last two digits - thus giving us a value between 1.00 and 1023.99 (the decimal will be inserted after this code). If the value is less than 1 Tb, we then check for something equal to or greater than 1 Gb. And then we check at the 1 Mb and then 1 Kb boundaries. The suffix is set appropriately if the value is 1024 or larger. By the end of this code, S is the numeric value (sans decimal point) and Suffix is the appropriate suffix value (or null).

Why do we divide by 1024 instead of by 1000? Computer storage is always measured in powers of 2, and 1,024 is the power of 2 that is closest to 1,000. Thus 1,000 bytes is not exactly 1K bytes. That is why the KB constant is 1024. Likewise, 1M bytes is slightly more than one million bytes, and so on.

    if( Suffix <> '' ) then
    begin
        S := copy( S, 1, length( S ) - 2 ) + '.' + copy( S, length( S ) - 1, length( S ) ) ;
    end ;
    Context := S + Suffix ;
end ; // Parse_CUnits
Finally, if we have a suffix, the value was greater than 1023 and we insert the decimal point in the string. Then we set the Context to the numeric value and suffix.

function Get_Numeric_Parameter( var Err : integer ; var Context : string ) : int64 ;

var S : string ;

begin
    S := Get_Parameter( Err, Context ) ;
    if( Err <> 0 ) then
    begin
        exit ;
    end ;
    S := UCL_Strtoint( S ) ;
    if( S = '' ) then
    begin
        Err := UCL_ARGREQ ;
        exit ;
    end ;
    if( not trystrtoint64( S, Result ) ) then
    begin
        Err := UCL_EXPSYN ; // Invalid expression syntax
        Context := S ;
        exit ;
    end ;
end ;
This function gets a parameter and returns it in integer form. If there was any problem, we set Err and exit.

In the next article, we will continue our examination of UCL lexical functions.

 

Copyright © 2019 by Alan Conroy. This article may be copied in whole or in part as long as this copyright is included.