1 Introduction
2 Ground Rules

Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class

The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up

The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup

Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API

Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O

UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation

UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services

UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN

CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND

Glossary/Index


Downloads

OPCOM

We've briefly described OPCOM before. In this article, we will look at the implementation (and document the features) necessary to support REPLY. There are additional features that we will discuss in future articles. The provided documentation only includes what the code currently covers.

There are some differences from VMS. On VMS, OPCOM is started with the SYS$SYSTEM:STARTUP script. One of the things this script does is start OPCOM detached. In fact, as far as I can tell, the only way to run something detached on VMS is to start it detached - or to hang up on a remote connection. Though I an hesitant to add a whole new feature not in the documentation, I cannot think of any potential security (or other) concern. I can see other uses for a way to detach an existing process, which we will use in the future. So in OPCOM, we will use the DETACH service to detach ourselves. First the admin documentation.

OPCOM
The operator communication manager (OPCOM) is a system service used to allow users and operators to communicate and logs events in files. Messages come to OPCOM from system events, programs, and users and then are logged and/or sent to operators for action.

OPCOM runs as a detached process. Terminals can be specifically designated as operator terminals. By default TERMA0: is designated as an operator terminal. Messages can be sent from OPCOM to operator terminals. Programs such as REPLY can be used to control OPCOM. OPCOM also writes messages to the operator log file, which has the default name of sys$manager:operator.log.

Operator messages have message classes that can be used to filter them. The classes are:
NameDescription
GENERALGeneral messages not covered by any other message class.
MAILMessages sent by the MAIL utility.
OPCOMUrgent messages sent by OPCOM.
PHONEMessages sent by the PHONE utility.
QUEUEMessages sent by Queue manager.
SHUTDOWNShutdown messages.
UCLMessages sent for Control-T status.
URGENTUrgent messages.
USER1-USER16User-defined messages sent by some programs.
Operator terminals can be enabled/disabled for certain message classes. Also, OPCOM can be enabled/disabled for certain message classes. The OPC$OPA0_CLASSES symbol can be defined to indicate which message classes are sent to TERMA0: when OPCOM starts. If the symbol is not defined, is null, or has an invalid class name in it, all message classes are enabled for the terminal. Otherwise it is a comma-delimited list of class names.

OPCOM is started automatically on system startup, by default. To manually start it, use the command:

$ SYS$SYSTEM:OPCOM

To control OPCOM, use the REPLY utility. See the documentation on that utility for details. Some system symbols can be used to control the operation of OPCOM.
NameDescription
OPC$LOGFILE_CLASSESMessage classes to log to the operator log file.
OPC$LOGFILE_NAMEName of the operator log file.
OPC$OPA0_CLASSESMessage classes to automatically assign to TERMA0:
OPCOM$MAILBOXMailbox associated with OPCOM messages.

Messages sent to OPCOM through the mailbox have two forms: commands and messages. Commands are denoted by a message beginning with an ESCape character, a class index, another ESCape, and then the message text. If the message doesn't start with an ESCape it is a command. However, unrecognized commands are treated as general messages.

The message format is:

EclassEmessage

where "class" is the message class, "message" is the message text, and the superscript E indicates the ASCII ESCape character. Example:

E5ESystem is shutting down

Commands are:
CommandDescription
enabledEnable messages for a terminal. Format: enabled=<term:>{<class>{,...}
where <term> is the terminal to affect and <class> is the message class to enable. This can be a comma-delimited list. If no list or class is provided, all classes are enabled. Example:
enabled=terma9:queue,phone
disabledDisable messages for a terminal. Format: enabled=<term:>{<class>{,...}
where <term> is the terminal to affect and <class> is the message class to disable. This can be a comma-delimited list. If no list or class is provided, all classes are disabled. Example:
disabled=terma9:
logOpen operator log file.
unlogClose operator log file.


function Run : int64 ;

var E, Extended_Error : int64 ;
    OS : POS_UOS ;
    T : string ;

begin
    OS := new( POS_UOS, Init ) ;
    E := _OPCOM( Extended_Error, T ) ;
    if( E <> 0 ) then
    begin
        if( Extended_Error <> 0 ) then
        begin
            OS^.OutputLn( 0, LIB_Get_Exception_Text( 0, Extended_Error ) ) ;
            OS^.OutputLn( 0, '    \' + T + '\' ) ;
        end ;
        OS^.OutputLn( 0, LIB_Get_Exception_Text( 0, E ) ) ;
    end ;
    OS.Free ;
    SYS_EXIT( 0 ) ;
end ;
This is the main (only) entry point to OPCOM. OPCOM is a service instead of a utility or CUSP, which means that it is not a callable module for other programs. If there is an error on startup, the program will exit with an error. If there are no errors, OPCOM will detach and run in the background.

type TClasses = array[ 0..22 ] of boolean ;

     TTerm = class
                 public
                     Name : string ;
                     Classes : TClasses ;
             end ;

function _OPCOM( var Extended_Error : int64 ; Extended_Text : string ) : int64 ;

var Buffer : PAnsiChar ;
    Classes, Disabled : TClasses ;
    Context : int64 ;
    Descriptors : array[ 0..1 ] of PPSCAN_Reference_Descriptor ;
    E : int64 ;
    IOSB : TIOSB ;
    OS : POS_UOS ;
    F, Security_File : TCOM_UOS_File ; // Log and security files
    I : integer ;
    Info : TMessage_Info ;
    Logfile_Name : string ;
    Message_Class : integer ;
    Msg, SRB : TSRB ;
    S, SL : string ;
    Term : TTerm ;
    Terms : TList ; // List of operator terminals (TTerm instances)

begin
    // Setup...
    Result := 0 ;
    Extended_Error := 0 ;
    fillchar( Classes, sizeof( Classes ), -1 ) ; // Enable all classes
    Terms := TList.Create ;
This routine does the startup and operation of OPCOM. Here we initialize variables in preparation for that. The Classes array holds booleans that indicate which types of messages are logged. Here, we must momentarily digress. On VMS, according to the documentation, using REPLY to send messages to terminals does so through OPCOM (ie it sends the message to OPCOM, which in turn sends it out to the terminals). On UOS, however, messages to terminals are sent directly by REPLY, via the BRKTHRU service. The reason for this is as follows: 1) messages to terminals should work even if OPCOM is not running; and 2) we want to avoid congestion with OPCOM - leaving it to log system and security messages and handle device media requests rather than pumping notice messages out to terminals (and the delays associated with that). So, our Classes array handles what is sent to the log file, but we will only send text to operator terminals. We initialize the array so that all messages are logged by default.

    // Enable terma0, all classes, by default
    Term := TTerm.Create ;
    Terms.Add( Term ) ;
    Term.Name := 'terma0:' ;
    fillchar( Term.Classes, sizeof( Term.Classes ), -1 ) ;
    S := Get_Symbol( 'OPC$OPA0_CLASSES' ) ;
    if( S <> '' ) then
    begin
        fillchar( Classes, sizeof( Classes ), 0 ) ; // Disable all classes
        Parse_Classes( S, Term.Classes ) ;
    end ;
By default, we will make TERMA0: an operator terminal. The OPC$OPA0_CLASSES symbol can be defined to indicate which message classes are logged to the terminal. Terms contains a list of TTerm instances which indicate the terminal name and the classes of messages to log to it. Thus, we create a new TTerm instance and add it to the list. Then, if the symbol is set, we will parse it and set the classes for TERMA0: based on the list of message classes in the symbol. If not defined, all classes of messages are enabled for TERMA0:. Note that VMS allows another symbol to disable TERMA0: on OPCOM startup, but we won't implement that. For reasons that we will explain in the future, we want OPCOM messages always sent to TERMA0:. For similar reasons, we don't disable OPCOM on "workstations" (a PC would qualify as a workstation in VMS terms).

    // Ensure that OPCOM isn't already running...
    S := Normalize_Filename( 'sys$system:opcom.exe' ) ;
    Context := 0 ;
    fillchar( Descriptors, sizeof( Descriptors ), 0 ) ;
    Descriptors[ 0 ].MBO := $FFFF ;
    Descriptors[ 0 ].MBMO := $FFFFFFFF ;
    Descriptors[ 0 ].Code := PSCAN_FULL_IMAGE ;
    Descriptors[ 0 ].Length := length( S ) ;
    Descriptors[ 0 ].Address := int64( PChar( S ) ) ;
    Descriptors[ 0 ].Flags := PSCAN_M_EQL ;
    SYS_Process_Scan( int64( @Context ), int64( @Descriptors ) ) ;
    SYS_GETJPIW( 0, int64( @Context ), 0, 0, 0, 0, 0 ) ;
    if( LIB_Get_Exception( 0 ) = 0 ) then // No exception - an OPCOM process already running
    begin
        Result := OPCOM_ALREADY ;
        exit ;
    end ;
Once we've finished setting up, we have to check to see if OPCOM is already running. Like most UOS services, OPCOM is a singleton. That means, only one instance of it is ever running at a time. It isn't required, so it doesn't have to run at all, but if it does there cannot be more than one. There are various technical reasons for this (such as avoiding corrupting the log file with multiple processes writing to it), but it also doesn't make sense to have more than one system logging service running at a given time. Thus, we scan the processes for one with an image name matching ours. We get the image name from the call to the Normalize_Filename function (covered below). We need the fully qualified name because we cannot assume that there aren't other programs named OPCOM, which are not the UOS service. If there are, we don't want to prevent the service from running. The PSCAN_FULL_IMAGE item code is new and we will cover it below. If the OPCOM service is running, we exit with an error to that effect.

Are there other ways we could check to see if the OPCOM service is already running? Actually not; at least not any that are foolproof. For instance, one might be tempted to use the OPCOM mailbox device as a means of determining this. But the mailbox is permanent, which means OPCOM could be stopped (by an abend or a killed process, for instance), but the mailbox would remain. So its existence only tells us that OPCOM once ran during this timesharing session - not whether or not it is currently running.

    // Determine messages classes defined in existing log file...
    Logfile_Name := 'SYS$MANAGER:OPERATOR.LOG' ;
    S := Get_Symbol( 'OPC$LOGFILE_NAME' ) ;
    if( S <> '' ) then
    begin
        Logfile_Name := S ;
    end ;
    F := Open_Binary_File( Logfile_Name, FAB_V_GET ) ;
    if( F = nil ) then
    begin
        if( Open_Error <> UOSErr_File_Not_Found ) then
        begin
            Extended_Error := UTIL_OPENERR ;
            Extended_Text := Logfile_Name ;
            Result := Open_Error ;
            exit ;
        end ;
        
        // Determine classes to log to log file...
        S := Get_Symbol( 'OPC$LOGFILE_CLASSES' ) ;
        if( S <> '' ) then
        begin
            fillchar( Classes, sizeof( Classes ), 0 ) ; // Disable all classes
            Parse_Classes( S, Classes ) ;
        end ;
    end else
OPCOM will default to whatever messages are enabled/disabled based on the existing log file (creating the last time that OPCOM was running). The log file can be specified via the OPC$LOGFILE_NAME symbol, but defaults to SYS$MANAGER:OPERATOR.LOG if the symbol is not defined (or null). First we open the file. If this fails, we check the error code. If it indicates that the file doesn't exist, that is fine. For any other error, we exit with that error. In the case of a non-existent file, there is no history to read so we default to all messages being enabled. However, if the OPC$LOGFILE_CLASSES symbol is set, we will set our default classes from that symbol.

    begin
        fillchar( Classes, sizeof( Classes ), 0 ) ; // Disable all classes
        while( not F.EOF ) do
        begin
            F.Readln( Buffer ) ;
            S := Ansistring( Buffer ) ;
            if( copy( S, 1, 7 ) = 'enable ' ) then
            begin
                S := copy( S, 8, length( S ) ) ;
                I := Class_Index( S ) ;
                if( I <> -1 ) then
                begin
                    Classes[ I ] := True ;
                end
            end else
            if( copy( S, 1, 8 ) = 'disable ' ) then
            begin
                S := copy( S, 9, length( S ) ) ;
                I := Class_Index( S ) ;
                if( I <> -1 ) then
                begin
                    Classes[ I ] := False ;
                end
            end ;
        end ;
        F.Close ;
        F := nil ;
    end ;
If the log file already exists, then we read through it to find any Enable and Disable commands, adjusting the Classes array as appropriate. When done, we close the file.

    // Create/open files...
    F := Open_Binary_File( Logfile_Name, FAB_V_GET or FAB_V_PUT or FAB_V_CIF or FAB_V_SUP ) ;
    if( F = nil ) then
    begin
        Extended_Error := UTIL_OPENERR ;
        Extended_Text := Logfile_Name ;
        Result := Open_Error ;
        exit ;
    end ;
    for I := low( Classes ) to high( Classes ) do // Write enabled classes to log file
    begin
        if( Classes[ I ] ) then
        begin
            F.Writeln( PChar( 'enable ' + Class_Name( I ) ) ) ;
        end ;
    end ;
Now we open a new log file. We use FAB_V_SUP to overwrite any existing log file and FAB_V_CIF to create a new one if none exists. If this fails, we exit with an error. Otherwise, we write the initial enabled classes to the file. That way, the next time OPCOM is started, it will have the proper starting configuration.

    // Create OPCOM mailbox...
    E := CREMBX( 1, Context, 0, 0,
        PROTECTION_OWNER_MASK or PROTECTION_SYSTEM_MASK, 0, 'OPCOM$MAILBOX',
        CMB_M_READONLY, 0 ) ; //TODO:Handle flags
    if( E <> 0 ) then
    begin
        Result := E ;
        exit ;
    end ;
Next we create the OPCOM mailbox, exiting if there is an error. If a mailbox already exists with the given symbol name, that mailbox is opened. That way, if OPCOM is stopped and then restarted, it will continue processing messages from where it left off.

    // Notify user that OPCOM has started...
    OS := new( POS_UOS, Init ) ;
    OS^.OutputLn( 0, LIB_Get_Exception_Text( 0, OPCOM_STARTED ) ) ;
    OS.Free ;

    // Detach process....
    SYS_DETACH( 0 ) ;
Next we display a message to the terminal running the program that indicates OPCOM has started. Then we detach from the terminal to run as a background service.

    // Handle messages loop...
    Buffer := allocmem( 65536 ) ;
    while( true ) do
    begin
        // Get next message from mailbox...
        SYS_QIOW( 0, int64( @Context ), IO_READVBLK, int64( @IOSB ), 0, 0,
            int64( @Buffer ), 65536, int64( @Info ), 0, 0, 0 ) ;
Now that starting up has completed successfully, we loop until OPCOM is stopped. Before starting the loop, we create a buffer of 64K bytes to hold whatever messages are sent to us. All messages ought to be significantly smaller than this, and any that are longer will be truncated at the 64K byte boundary.

The first thing we do in the loop is query the mailbox for the next message. If there are no messages, QIOW will wait until one is posted. We use the IO_READVBLK function.

        if( LIB_Get_Exception( 0 ) = 0 ) then
        begin
            setlength( S, IOSB.r_io_64.r_bcnt_32.l_bcnt ) ;
            move( Buffer[ 0 ], PChar( S )[ 0 ], length( S ) ) ;
            if( ( Info.Privileges and OPER ) = 0 ) then // No OPER privilege
            begin
                continue ;
            end ;

            // Process message...
            Message_Class := BRK_C_GENERAL ;
            if( copy( S, 1, 1 ) = ESC ) then
            begin
                S := copy( S, 2, length( S ) ) ;
                I := pos( ESC, S ) ;
                SL := copy( S, 1, I - 1 ) ;
                S := ' ' + copy( S, I + 1, length( S ) ) ;
                if( trystrtoint( SL, Message_Class ) ) then
                begin
                    if( ( Message_Class >= 0 ) and ( Message_Class <= 22 ) ) then // Valid class
                    begin
                        if( not Classes[ Message_Class ] ) then
                        begin
                            continue ;
                        end ;
                    end ;
                end ;
            end ;
If the QIOW didn't result in an exception, we copy the buffered message into the S string. If the first character is an Escape, we treat this as a message of a given class, as opposed to a command or notification. Delimited by a second escape is a number in human-readable form, which is the message class for this message. We strip that off the message into the SL variable. If the class is valid and is not a class that is enabled for us, we skip to the end of the loop. Otherwise we fall through to the other processing. Note that we add a space to the beginning of the remaining message in S. This is to prevent the message from possibly being interpreted as a command. Note that if the message doesn't start with an Escape, the message class will be considered General.

            // Write to log file...
            if( Logfile_Name <> '' ) then // Log file is open...
            begin
                F.Writeln( PChar( '%%%%%%%%%%% OPCOM ' + ASCTIM( 0 ) + ' %%%%%%%%%%%' ) ) ;
                F.Writeln( PChar( '***' + S ) ) ;
            end ;

            // Write to operator terminals...
            Result := Tell_Operators( Message_Class, S ) ;
Now we log the message to the system log file in two lines: the first indicates the date/time of the message, and the second is the message text itself (prefixed with asterisks). Then we send the message to the operator terminals via the local Tell_Operators function (see below).

            SL := lowercase( S ) ;
            if( SL = 'log' ) then
            begin
                if( F = nil ) then
                begin
                    Logfile_Name := 'SYS$MANAGER:OPERATOR.LOG' ;
                    S := Get_Symbol( 'OPC$LOGFILE_NAME' ) ;
                    if( S <> '' ) then
                    begin
                        Logfile_Name := S ;
                    end ;
                    F := Open_Binary_File( Logfile_Name, 
                        FAB_V_GET or FAB_V_PUT or FAB_V_SUP or FAB_V_CIF ) ;
                    if( F = nil ) then
                    begin
                        Tell_Operators( BRK_C_OPCOM, 'OPCOM failed to open log file ' + 
                            Logfile_Name ) ;
                        Tell_Operators( BRK_C_OPCOM, LIB_Get_Exception_Text( 0, Open_Error ) ) ;
                    end ;
                end ;
            end else
            if( SL = 'nolog' ) then
            begin
                if( Logfile_Name <> '' ) then
                begin
                    Logfile_Name := '' ;
                    F.Close ;
                    F := nil ;
                end ;
            end else
Now we check the message against known OPCOM commands. This is done case-insensitive, so we first make a lowercase copy of the message to make comparisons easier. The first two commands are log and nolog. The first turns logging on and the second turns it off. If the log file is already in the requested state, nothing is done. Otherise, we open or close the file as requested. The log file name is redetermined as it was earlier. This allows the administrator to change the log file, then have OPCOM use the new file without having to restart OPCOM.

            if( copy( SL, 1, 7 ) = 'enabled' ) then
            begin
                I := pos( '=', SL ) ;
                SL := trim( copy( SL, I + 1, length( SL ) ) ) ;
                I := pos( ':', SL ) ;
                S := copy( SL, 1, I ) ;
                SL := copy( SL, I + 1, length( SL ) ) ;
                Term := Find_Term( S ) ;
                if( Term = nil ) then
                begin
                    Term := TTerm.Create ;
                    Terms.Add( Term ) ;
                end ;
                if( SL = '' ) then
                begin
                    fillchar( Term.Classes, sizeof( Term.Classes ), -1 ) ;
                end else
                begin
                    Parse_Classes( SL, Term.Classes ) ;
                end ;
            end else
            if( copy( SL, 1, 8 ) = 'disabled' ) then
            begin
                I := pos( '=', SL ) ;
                SL := trim( copy( SL, I + 1, length( SL ) ) ) ;
                I := pos( ':', SL ) ;
                S := copy( SL, 1, I ) ;
                SL := copy( SL, I + 1, length( SL ) ) ;
                Term := Find_Term( S ) ;
                if( Term <> nil ) then // Terminal is an operator
                begin
                    if( SL = '' ) then // Disabling all
                    begin
                        Terms.Remove( Term ) ;
                        Term.Free ;
                    end else
                    begin
                        Parse_Classes( SL, Disabled ) ;
                        for I := 0 to 22 do
                        begin
                            Term.Classes[ I ] := False ;
                        end ;
                    end ;
                end ;
            end ;
        end ; // if( E <> 0 )
    end ; // while( true )
end ; // Run
The next two commands we handle are enable and disable. In either case, we first parse the command so that we have the terminal name and the message class(es). We also verify that the message sender has the OPER privilege so that not just anyone can enable or disable operator terminals. Then we get the TTerm instance for the specified terminal (if any). A this point, the operation differs between the two commands. If enabling, we create a TTerm instance if the terminal is not already an operator terminal (ie not in the list). We then set the message classes for the terminal. If disabling and the terminal isn't in our list, there is nothing to do. If it is in the list but we are disabling everything, we remove it from the list completely. Otherwise we clear the specified message classes from the terminal.

    function Find_Term( S : string ) : TTerm ;

    var I : integer ;

    begin
        for I := 0 to Terms.Count - 1 do
        begin
            Result := TTerm( Terms[ I ] ) ;
            if( S = Result.Name ) then
            begin
                exit ;
            end ;
        end ;
        Result := nil ; // Not found
    end ;
This local function locates the specified terminal in the operator terminal list, returning nil if not found.

    function Tell_Operators( Message_Class : integer ; const S : string ) : integer ;

    var I : integer ;

    begin
        Result := 0 ;
        for I := 0 to Terms.Count - 1 do
        begin
            Term := TTerm( Terms[ I ] ) ;
            if( ( Message_Class = BRK_C_OPCOM ) or ( Term.Classes[ Message_Class ] ) ) then
            begin
                Set_String( Term.Name, SRB ) ;
                Set_String( '%%%%%%%%%%% OPCOM ' + ASCTIM( 0 ) + ' %%%%%%%%%%%', Msg ) ;
                Result := SYS_BRKTHRUW( 0, int64( @Msg ), int64( @SRB ), BRK_C_DEVICE,
                    int64( @IOSB ), 0, 0, BRK_C_GENERAL, 5, 0, 0 ) ;
                Set_String( S, Msg ) ;
                Result := SYS_BRKTHRUW( 0, int64( @Msg ), int64( @SRB ), BRK_C_DEVICE,
                    int64( @IOSB ), 0, 0, BRK_C_GENERAL, 5, 0, 0 ) ;
            end ;
        end ;
    end ;
This local function is used to send messages to the operator terminals. We iterate through the operator terminals, and see if the message class is enabled for the terminal. Note that if the message type is BRK_C_OPCOM, the terminal is automatically sent the message. This message class is reserved for urgent notifications from OPCOM itself. Assuming the terminal is enabled for the message class, the text is sent to the terminal via the BRKTHRU service. Note that the same two lines are output to the terminal as were written to the log file.

procedure Parse_Classes( S : string ; var Classes : TClasses ) ;

var C : string ;
    I : integer ;

begin
    while( S <> '' ) do // Iterate through classes
    begin
        I := pos( ',', S + ',' ) ;
        C := copy( S, 1, I - 1 ) ;
        S := copy( S, I + 1, length( S ) ) ;
        if( C <> '' ) then // Ignore nulls (,,)
        begin
            I := Class_Index( C ) ;
            if( I = -1 ) then // Invalid class
            begin
                fillchar( Classes, sizeof( Classes ), -1 ) ; // Enable all classes
                break ;
            end ;
            Classes[ I ] := True ;
        end ;
    end ;
end ;
This function is called in the above code. It sets the values of a class array from a string or list of values. If an unknown class is found, the entire array is set to true.

function Class_Index( S : string ) : integer ;

begin
    Result := -1 ;
    S := lowercase( S ) ;
    if( S = 'general' ) then
    begin
        Result := BRK_C_GENERAL ;
    end else
    if( S = 'phone' ) then
    begin
        Result :=  BRK_C_PHONE;
    end else
    if( S = 'mail' ) then
    begin
        Result := BRK_C_MAIL ;
    end else
    if( ( S = 'ucl' ) or ( S = 'dcl' ) ) then
    begin
        Result := BRK_C_UCL ;
    end else
    if( S = 'queue' ) then
    begin
        Result := BRK_C_QUEUE ;
    end else
    if( S = 'shutdown' ) then
    begin
        Result := BRK_C_SHUTDOWN ;
    end else
    if( S = 'urgent' ) then
    begin
        Result := BRK_C_URGENT ;
    end else
    if( S = 'user1' ) then
    begin
        Result := BRK_C_USER1 ;
    end else
    if( S = 'user2' ) then
    begin
        Result := BRK_C_USER2 ;
    end else
    if( S = 'user3' ) then
    begin
        Result := BRK_C_USER3 ;
    end else
    if( S = 'user4' ) then
    begin
        Result := BRK_C_USER4 ;
    end else
    if( S = 'user5' ) then
    begin
        Result := BRK_C_USER5 ;
    end else
    if( S = 'user6' ) then
    begin
        Result := BRK_C_USER6 ;
    end else
    if( S = 'user7' ) then
    begin
        Result := BRK_C_USER7 ;
    end else
    if( S = 'user8' ) then
    begin
        Result := BRK_C_USER8 ;
    end else
    if( S = 'user9' ) then
    begin
        Result := BRK_C_USER9 ;
    end else
    if( S = 'user10' ) then
    begin
        Result := BRK_C_USER10 ;
    end else
    if( S = 'user11' ) then
    begin
        Result := BRK_C_USER11 ;
    end else
    if( S = 'user12' ) then
    begin
        Result := BRK_C_USER12 ;
    end else
    if( S = 'user13' ) then
    begin
        Result := BRK_C_USER13 ;
    end else
    if( S = 'user14' ) then
    begin
        Result := BRK_C_USER14 ;
    end else
    if( S = 'user15' ) then
    begin
        Result := BRK_C_USER15 ;
    end else
    if( S = 'user16' ) then
    begin
        Result := BRK_C_USER16 ;
    end ;
end ; // Class_Index


function Class_Name( I : integer ) : string ;

begin
    Result := '' ;
    case I of
        BRK_C_GENERAL : Result := 'general' ;
        BRK_C_PHONE : Result := 'phone' ;
        BRK_C_MAIL : Result := 'mail' ;
        BRK_C_UCL : Result := 'ucl' ;
        BRK_C_QUEUE : Result := 'queue' ;
        BRK_C_SHUTDOWN : Result := 'shutdown' ;
        BRK_C_URGENT : Result := 'urgent' ;
        BRK_C_USER1 : Result := 'user1' ;
        BRK_C_USER2 : Result := 'user2' ;
        BRK_C_USER3 : Result := 'user3' ;
        BRK_C_USER4 : Result := 'user4' ;
        BRK_C_USER5 : Result := 'user5' ;
        BRK_C_USER6 : Result := 'user6' ;
        BRK_C_USER7 : Result := 'user7' ;
        BRK_C_USER8 : Result := 'user8' ;
        BRK_C_USER9 : Result := 'user9' ;
        BRK_C_USER10 : Result := 'user10' ;
        BRK_C_USER11 : Result := 'user11' ;
        BRK_C_USER12 : Result := 'user12' ;
        BRK_C_USER13 : Result := 'user13' ;
        BRK_C_USER14 : Result := 'user14' ;
        BRK_C_USER15 : Result := 'user15' ;
        BRK_C_USER16 : Result := 'user16' ;
    end ;
end ; // Class_Name
These functions are used above to convert between message class names and integer offset values.

        PSCAN_FULL_IMAGE: // Full Image name //NEW
            begin
                Result := Process.Full_Image_Name
            end ;
This code is added to the TFilter.Get_Filter_Value method in the USC. This code is not in VMS, but UOS has it to enable us to filter on image names. Note that the full image name contains the node/device/path/name/extension/version instead of just the file's name for the normal image name.

function Normalize_Filename( S : string ) : string ;

var Node, Access, Secondary_Node, Device, Path, Name, Extension, Version : string ;

begin
    Parse_Filename( S,
        Node, Access, Secondary_Node, Device, Path, Name, Extension, Version ) ;
    S := Device + Path + '\' + Name + '.' + Extension ;
    if( Version <> '' ) then
    begin
        S := S + ';' + Version ;
    end ;
    if( Node <> '' ) then
    begin
        S := Node + '::' + S ;
    end ;
    Result := S ;
end ;
This function in PasStarlet parses a filename and then puts it back together. If a logical is used, the call to Parse_Filename will translate it, so the value that this function returns is the fully qualified physical filename including node, path, etc.

In the next article, we will look at the system services that support mailboxes.