1 Introduction
2 Ground Rules
Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class
The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up
The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup
Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API
Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O
UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation
UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services
UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN
CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND
Glossary/Index
Downloads
|
OPCOM
We've briefly described OPCOM before. In this article, we will look at the implementation
(and document the features) necessary to support REPLY. There are additional features
that we will discuss in future articles. The provided documentation only includes
what the code currently covers.
There are some differences from VMS.
On VMS, OPCOM is started with the SYS$SYSTEM:STARTUP script. One of the things this
script does is start OPCOM detached. In fact, as far as I can tell, the only
way to run something detached on VMS is to start it detached - or to hang up on a remote
connection. Though I an hesitant to add a whole new feature not in the documentation,
I cannot think of any potential security (or other) concern. I can see other uses
for a way to detach an existing process, which we will use in the future. So in
OPCOM, we will use the DETACH service to detach ourselves. First the admin documentation.
OPCOM
The operator communication manager (OPCOM) is a system service used to allow users
and operators to communicate and logs events in files. Messages come to OPCOM from
system events, programs, and users and then are logged and/or sent to operators for
action.
OPCOM runs as a detached process. Terminals can be specifically designated as operator
terminals. By default TERMA0: is designated as an operator terminal. Messages
can be sent from OPCOM to operator terminals. Programs such as REPLY can be used
to control OPCOM. OPCOM also writes messages to the operator log file, which has
the default name of sys$manager:operator.log.
Operator messages have message classes that can be used to filter them. The classes
are:
Name | Description |
GENERAL | General messages not covered by any other message class. |
MAIL | Messages sent by the MAIL utility. |
OPCOM | Urgent messages sent by OPCOM. |
PHONE | Messages sent by the PHONE utility. |
QUEUE | Messages sent by Queue manager. |
SHUTDOWN | Shutdown messages. |
UCL | Messages sent for Control-T status. |
URGENT | Urgent messages. |
USER1-USER16 | User-defined messages sent by some programs. |
Operator terminals can be enabled/disabled for certain message classes. Also, OPCOM
can be enabled/disabled for certain message classes. The OPC$OPA0_CLASSES symbol
can be defined to indicate which message classes are sent to TERMA0: when OPCOM
starts. If the symbol is not defined, is null, or has an invalid class name in it,
all message classes are enabled for the terminal. Otherwise it is a comma-delimited
list of class names.
OPCOM is started automatically on system startup, by default. To manually start it,
use the command:
$ SYS$SYSTEM:OPCOM
To control OPCOM, use the REPLY utility. See the documentation on that utility for
details. Some system symbols can be used to control the operation of OPCOM.
Name | Description |
OPC$LOGFILE_CLASSES | Message classes to log to the operator log file. |
OPC$LOGFILE_NAME | Name of the operator log file. |
OPC$OPA0_CLASSES | Message classes to automatically assign to TERMA0: |
OPCOM$MAILBOX | Mailbox associated with OPCOM messages. |
| |
Messages sent to OPCOM through the mailbox have two forms: commands and messages.
Commands are denoted by a message beginning with an ESCape character, a class index,
another ESCape, and then the message text. If the message doesn't start with an ESCape
it is a command. However, unrecognized commands are treated as general messages.
The message format is:
EclassEmessage
where "class" is the message class, "message" is the message text, and the superscript
E indicates the ASCII ESCape character. Example:
E5ESystem is shutting down
Commands are:
Command | Description |
enabled | Enable messages for a terminal. Format: enabled=<term:>{<class>{,...} where <term> is the terminal to affect and <class> is the message class to enable. This can be a comma-delimited list. If no list or class is provided, all classes are enabled. Example: enabled=terma9:queue,phone |
disabled | Disable messages for a terminal. Format: enabled=<term:>{<class>{,...} where <term> is the terminal to affect and <class> is the message class to disable. This can be a comma-delimited list. If no list or class is provided, all classes are disabled. Example: disabled=terma9: |
log | Open operator log file. |
unlog | Close operator log file. |
function Run : int64 ;
var E, Extended_Error : int64 ;
OS : POS_UOS ;
T : string ;
begin
OS := new( POS_UOS, Init ) ;
E := _OPCOM( Extended_Error, T ) ;
if( E <> 0 ) then
begin
if( Extended_Error <> 0 ) then
begin
OS^.OutputLn( 0, LIB_Get_Exception_Text( 0, Extended_Error ) ) ;
OS^.OutputLn( 0, ' \' + T + '\' ) ;
end ;
OS^.OutputLn( 0, LIB_Get_Exception_Text( 0, E ) ) ;
end ;
OS.Free ;
SYS_EXIT( 0 ) ;
end ;
This is the main (only) entry point to OPCOM. OPCOM is a service instead of a utility
or CUSP, which means that it is not a callable module for other programs. If there
is an error on startup, the program will exit with an error. If there are no errors,
OPCOM will detach and run in the background.
type TClasses = array[ 0..22 ] of boolean ;
TTerm = class
public
Name : string ;
Classes : TClasses ;
end ;
function _OPCOM( var Extended_Error : int64 ; Extended_Text : string ) : int64 ;
var Buffer : PAnsiChar ;
Classes, Disabled : TClasses ;
Context : int64 ;
Descriptors : array[ 0..1 ] of PPSCAN_Reference_Descriptor ;
E : int64 ;
IOSB : TIOSB ;
OS : POS_UOS ;
F, Security_File : TCOM_UOS_File ; // Log and security files
I : integer ;
Info : TMessage_Info ;
Logfile_Name : string ;
Message_Class : integer ;
Msg, SRB : TSRB ;
S, SL : string ;
Term : TTerm ;
Terms : TList ; // List of operator terminals (TTerm instances)
begin
// Setup...
Result := 0 ;
Extended_Error := 0 ;
fillchar( Classes, sizeof( Classes ), -1 ) ; // Enable all classes
Terms := TList.Create ;
This routine does the startup and operation of OPCOM. Here we initialize variables
in preparation for that. The Classes array holds booleans that indicate
which types of messages are logged. Here, we must momentarily digress. On VMS, according
to the documentation, using REPLY to send messages to terminals does so through OPCOM
(ie it sends the message to OPCOM, which in turn sends it out to the terminals). On
UOS, however, messages to terminals are sent directly by REPLY, via the BRKTHRU service.
The reason for this is as follows: 1) messages to terminals should work even if OPCOM
is not running; and 2) we want to avoid congestion with OPCOM - leaving it to
log system and security messages and handle device media requests rather than pumping
notice messages out to terminals (and the delays associated with that). So, our
Classes array handles what is sent to the log file, but we will only
send text to operator terminals. We initialize the array so that all messages are
logged by default.
// Enable terma0, all classes, by default
Term := TTerm.Create ;
Terms.Add( Term ) ;
Term.Name := 'terma0:' ;
fillchar( Term.Classes, sizeof( Term.Classes ), -1 ) ;
S := Get_Symbol( 'OPC$OPA0_CLASSES' ) ;
if( S <> '' ) then
begin
fillchar( Classes, sizeof( Classes ), 0 ) ; // Disable all classes
Parse_Classes( S, Term.Classes ) ;
end ;
By default, we will make TERMA0: an operator terminal. The OPC$OPA0_CLASSES symbol
can be defined to indicate which message classes are logged to the terminal. Terms
contains a list of TTerm instances which indicate the terminal name and the classes
of messages to log to it. Thus, we create a new TTerm instance and add it to the
list. Then, if the symbol is set, we will parse it and set the classes for TERMA0:
based on the list of message classes in the symbol. If not defined, all classes of
messages are enabled for TERMA0:. Note that VMS allows another symbol to disable
TERMA0: on OPCOM startup, but we won't implement that. For reasons that we will explain
in the future, we want OPCOM messages always sent to TERMA0:. For similar reasons,
we don't disable OPCOM on "workstations" (a PC would qualify as a workstation in VMS
terms).
// Ensure that OPCOM isn't already running...
S := Normalize_Filename( 'sys$system:opcom.exe' ) ;
Context := 0 ;
fillchar( Descriptors, sizeof( Descriptors ), 0 ) ;
Descriptors[ 0 ].MBO := $FFFF ;
Descriptors[ 0 ].MBMO := $FFFFFFFF ;
Descriptors[ 0 ].Code := PSCAN_FULL_IMAGE ;
Descriptors[ 0 ].Length := length( S ) ;
Descriptors[ 0 ].Address := int64( PChar( S ) ) ;
Descriptors[ 0 ].Flags := PSCAN_M_EQL ;
SYS_Process_Scan( int64( @Context ), int64( @Descriptors ) ) ;
SYS_GETJPIW( 0, int64( @Context ), 0, 0, 0, 0, 0 ) ;
if( LIB_Get_Exception( 0 ) = 0 ) then // No exception - an OPCOM process already running
begin
Result := OPCOM_ALREADY ;
exit ;
end ;
Once we've finished setting up, we have to check to see if OPCOM is already running.
Like most UOS services, OPCOM is a singleton. That means, only one instance
of it is ever running at a time. It isn't required, so it doesn't have to run at
all, but if it does there cannot be more than one. There are various technical reasons
for this (such as avoiding corrupting the log file with multiple processes writing
to it), but it also doesn't make sense to have more than one system logging service
running at a given time. Thus, we scan the processes for one with an image name
matching ours. We get the image name from the call to the Normalize_Filename function
(covered below). We need the fully qualified name because we cannot assume that there
aren't other programs named OPCOM, which are not the UOS service. If there
are, we don't want to prevent the service from running. The PSCAN_FULL_IMAGE item
code is new and we will cover it below. If the OPCOM service is running, we exit
with an error to that effect.
Are there other ways we could check to see if the OPCOM service is already running?
Actually not; at least not any that are foolproof. For instance, one might be tempted to use
the OPCOM mailbox device as a means of determining this. But the mailbox is permanent,
which means OPCOM could be stopped (by an abend or a killed process, for instance),
but the mailbox would remain. So its existence only tells us that OPCOM once ran
during this timesharing session - not whether or not it is currently running.
// Determine messages classes defined in existing log file...
Logfile_Name := 'SYS$MANAGER:OPERATOR.LOG' ;
S := Get_Symbol( 'OPC$LOGFILE_NAME' ) ;
if( S <> '' ) then
begin
Logfile_Name := S ;
end ;
F := Open_Binary_File( Logfile_Name, FAB_V_GET ) ;
if( F = nil ) then
begin
if( Open_Error <> UOSErr_File_Not_Found ) then
begin
Extended_Error := UTIL_OPENERR ;
Extended_Text := Logfile_Name ;
Result := Open_Error ;
exit ;
end ;
// Determine classes to log to log file...
S := Get_Symbol( 'OPC$LOGFILE_CLASSES' ) ;
if( S <> '' ) then
begin
fillchar( Classes, sizeof( Classes ), 0 ) ; // Disable all classes
Parse_Classes( S, Classes ) ;
end ;
end else
OPCOM will default to whatever messages are enabled/disabled based on the existing
log file (creating the last time that OPCOM was running). The log file can be specified
via the OPC$LOGFILE_NAME symbol, but defaults to SYS$MANAGER:OPERATOR.LOG if the symbol
is not defined (or null). First we open the file. If this fails, we check the
error code. If it indicates that the file doesn't exist, that is fine. For any other error, we exit with that error.
In the case of a non-existent file, there is no history to read so we default to
all messages being enabled. However, if the OPC$LOGFILE_CLASSES symbol is set, we
will set our default classes from that symbol.
begin
fillchar( Classes, sizeof( Classes ), 0 ) ; // Disable all classes
while( not F.EOF ) do
begin
F.Readln( Buffer ) ;
S := Ansistring( Buffer ) ;
if( copy( S, 1, 7 ) = 'enable ' ) then
begin
S := copy( S, 8, length( S ) ) ;
I := Class_Index( S ) ;
if( I <> -1 ) then
begin
Classes[ I ] := True ;
end
end else
if( copy( S, 1, 8 ) = 'disable ' ) then
begin
S := copy( S, 9, length( S ) ) ;
I := Class_Index( S ) ;
if( I <> -1 ) then
begin
Classes[ I ] := False ;
end
end ;
end ;
F.Close ;
F := nil ;
end ;
If the log file already exists, then we read through it to find any Enable and Disable
commands, adjusting the Classes array as appropriate. When done, we
close the file.
// Create/open files...
F := Open_Binary_File( Logfile_Name, FAB_V_GET or FAB_V_PUT or FAB_V_CIF or FAB_V_SUP ) ;
if( F = nil ) then
begin
Extended_Error := UTIL_OPENERR ;
Extended_Text := Logfile_Name ;
Result := Open_Error ;
exit ;
end ;
for I := low( Classes ) to high( Classes ) do // Write enabled classes to log file
begin
if( Classes[ I ] ) then
begin
F.Writeln( PChar( 'enable ' + Class_Name( I ) ) ) ;
end ;
end ;
Now we open a new log file. We use FAB_V_SUP to overwrite any existing log file
and FAB_V_CIF to create a new one if none exists. If this fails, we exit with an
error. Otherwise, we write the initial enabled classes to the file. That way, the
next time OPCOM is started, it will have the proper starting configuration.
// Create OPCOM mailbox...
E := CREMBX( 1, Context, 0, 0,
PROTECTION_OWNER_MASK or PROTECTION_SYSTEM_MASK, 0, 'OPCOM$MAILBOX',
CMB_M_READONLY, 0 ) ; //TODO:Handle flags
if( E <> 0 ) then
begin
Result := E ;
exit ;
end ;
Next we create the OPCOM mailbox, exiting if there is an error. If a mailbox already
exists with the given symbol name, that mailbox is opened. That way, if OPCOM is
stopped and then restarted, it will continue processing messages from where it left
off.
// Notify user that OPCOM has started...
OS := new( POS_UOS, Init ) ;
OS^.OutputLn( 0, LIB_Get_Exception_Text( 0, OPCOM_STARTED ) ) ;
OS.Free ;
// Detach process....
SYS_DETACH( 0 ) ;
Next we display a message to the terminal running the program that indicates OPCOM
has started. Then we detach from the terminal to run as a background service.
// Handle messages loop...
Buffer := allocmem( 65536 ) ;
while( true ) do
begin
// Get next message from mailbox...
SYS_QIOW( 0, int64( @Context ), IO_READVBLK, int64( @IOSB ), 0, 0,
int64( @Buffer ), 65536, int64( @Info ), 0, 0, 0 ) ;
Now that starting up has completed successfully, we loop until OPCOM is stopped.
Before starting the loop, we create a buffer of 64K bytes to hold whatever messages
are sent to us. All messages ought to be significantly smaller than this, and any
that are longer will be truncated at the 64K byte boundary.
The first thing we do in the loop is query the mailbox for the next message. If
there are no messages, QIOW will wait until one is posted. We use the IO_READVBLK
function.
if( LIB_Get_Exception( 0 ) = 0 ) then
begin
setlength( S, IOSB.r_io_64.r_bcnt_32.l_bcnt ) ;
move( Buffer[ 0 ], PChar( S )[ 0 ], length( S ) ) ;
if( ( Info.Privileges and OPER ) = 0 ) then // No OPER privilege
begin
continue ;
end ;
// Process message...
Message_Class := BRK_C_GENERAL ;
if( copy( S, 1, 1 ) = ESC ) then
begin
S := copy( S, 2, length( S ) ) ;
I := pos( ESC, S ) ;
SL := copy( S, 1, I - 1 ) ;
S := ' ' + copy( S, I + 1, length( S ) ) ;
if( trystrtoint( SL, Message_Class ) ) then
begin
if( ( Message_Class >= 0 ) and ( Message_Class <= 22 ) ) then // Valid class
begin
if( not Classes[ Message_Class ] ) then
begin
continue ;
end ;
end ;
end ;
end ;
If the QIOW didn't result in an exception, we copy the buffered message into the S
string. If the first character is an Escape, we treat this as a message of a given
class, as opposed to a command or notification. Delimited by a second escape is a
number in human-readable form, which is the message class for this message. We
strip that off the message into the SL variable. If the class is valid
and is not a class that is enabled for us, we skip to the end of the loop. Otherwise
we fall through to the other processing. Note that we add a space to the beginning
of the remaining message in S . This is to prevent the message from
possibly being interpreted as a command. Note that if the message doesn't start with
an Escape, the message class will be considered General.
// Write to log file...
if( Logfile_Name <> '' ) then // Log file is open...
begin
F.Writeln( PChar( '%%%%%%%%%%% OPCOM ' + ASCTIM( 0 ) + ' %%%%%%%%%%%' ) ) ;
F.Writeln( PChar( '***' + S ) ) ;
end ;
// Write to operator terminals...
Result := Tell_Operators( Message_Class, S ) ;
Now we log the message to the system log file in two lines: the first indicates the date/time
of the message, and the second is the message text itself (prefixed with asterisks).
Then we send the message to the operator terminals via the local Tell_Operators
function (see below).
SL := lowercase( S ) ;
if( SL = 'log' ) then
begin
if( F = nil ) then
begin
Logfile_Name := 'SYS$MANAGER:OPERATOR.LOG' ;
S := Get_Symbol( 'OPC$LOGFILE_NAME' ) ;
if( S <> '' ) then
begin
Logfile_Name := S ;
end ;
F := Open_Binary_File( Logfile_Name,
FAB_V_GET or FAB_V_PUT or FAB_V_SUP or FAB_V_CIF ) ;
if( F = nil ) then
begin
Tell_Operators( BRK_C_OPCOM, 'OPCOM failed to open log file ' +
Logfile_Name ) ;
Tell_Operators( BRK_C_OPCOM, LIB_Get_Exception_Text( 0, Open_Error ) ) ;
end ;
end ;
end else
if( SL = 'nolog' ) then
begin
if( Logfile_Name <> '' ) then
begin
Logfile_Name := '' ;
F.Close ;
F := nil ;
end ;
end else
Now we check the message against known OPCOM commands. This is done case-insensitive,
so we first make a lowercase copy of the message to make comparisons easier. The
first two commands are log and nolog. The first turns logging on and the second
turns it off. If the log file is already in the requested state, nothing is done.
Otherise, we open or close the file as requested. The log file name is redetermined
as it was earlier. This allows the administrator to change the log file, then have
OPCOM use the new file without having to restart OPCOM.
if( copy( SL, 1, 7 ) = 'enabled' ) then
begin
I := pos( '=', SL ) ;
SL := trim( copy( SL, I + 1, length( SL ) ) ) ;
I := pos( ':', SL ) ;
S := copy( SL, 1, I ) ;
SL := copy( SL, I + 1, length( SL ) ) ;
Term := Find_Term( S ) ;
if( Term = nil ) then
begin
Term := TTerm.Create ;
Terms.Add( Term ) ;
end ;
if( SL = '' ) then
begin
fillchar( Term.Classes, sizeof( Term.Classes ), -1 ) ;
end else
begin
Parse_Classes( SL, Term.Classes ) ;
end ;
end else
if( copy( SL, 1, 8 ) = 'disabled' ) then
begin
I := pos( '=', SL ) ;
SL := trim( copy( SL, I + 1, length( SL ) ) ) ;
I := pos( ':', SL ) ;
S := copy( SL, 1, I ) ;
SL := copy( SL, I + 1, length( SL ) ) ;
Term := Find_Term( S ) ;
if( Term <> nil ) then // Terminal is an operator
begin
if( SL = '' ) then // Disabling all
begin
Terms.Remove( Term ) ;
Term.Free ;
end else
begin
Parse_Classes( SL, Disabled ) ;
for I := 0 to 22 do
begin
Term.Classes[ I ] := False ;
end ;
end ;
end ;
end ;
end ; // if( E <> 0 )
end ; // while( true )
end ; // Run
The next two commands we handle are enable and disable. In either case, we first
parse the command so that we have the terminal name and the message class(es). We
also verify that the message sender has the OPER privilege so that not just anyone
can enable or disable operator terminals. Then we get the TTerm instance for the
specified terminal (if any). A this point, the operation differs between the two
commands. If enabling, we create a TTerm instance if the terminal is not already
an operator terminal (ie not in the list). We then set the message classes for the
terminal. If disabling and the terminal isn't in our list, there is nothing to do.
If it is in the list but we are disabling everything, we remove it from the list
completely. Otherwise we clear the specified message classes from the terminal.
function Find_Term( S : string ) : TTerm ;
var I : integer ;
begin
for I := 0 to Terms.Count - 1 do
begin
Result := TTerm( Terms[ I ] ) ;
if( S = Result.Name ) then
begin
exit ;
end ;
end ;
Result := nil ; // Not found
end ;
This local function locates the specified terminal in the operator terminal list,
returning nil if not found.
function Tell_Operators( Message_Class : integer ; const S : string ) : integer ;
var I : integer ;
begin
Result := 0 ;
for I := 0 to Terms.Count - 1 do
begin
Term := TTerm( Terms[ I ] ) ;
if( ( Message_Class = BRK_C_OPCOM ) or ( Term.Classes[ Message_Class ] ) ) then
begin
Set_String( Term.Name, SRB ) ;
Set_String( '%%%%%%%%%%% OPCOM ' + ASCTIM( 0 ) + ' %%%%%%%%%%%', Msg ) ;
Result := SYS_BRKTHRUW( 0, int64( @Msg ), int64( @SRB ), BRK_C_DEVICE,
int64( @IOSB ), 0, 0, BRK_C_GENERAL, 5, 0, 0 ) ;
Set_String( S, Msg ) ;
Result := SYS_BRKTHRUW( 0, int64( @Msg ), int64( @SRB ), BRK_C_DEVICE,
int64( @IOSB ), 0, 0, BRK_C_GENERAL, 5, 0, 0 ) ;
end ;
end ;
end ;
This local function is used to send messages to the operator terminals. We iterate
through the operator terminals, and see if the message class is enabled for the
terminal. Note that if the message type is BRK_C_OPCOM , the terminal
is automatically sent the message. This message class is reserved for urgent notifications
from OPCOM itself. Assuming the terminal is enabled for the message class, the text
is sent to the terminal via the BRKTHRU service. Note that the same two lines are
output to the terminal as were written to the log file.
procedure Parse_Classes( S : string ; var Classes : TClasses ) ;
var C : string ;
I : integer ;
begin
while( S <> '' ) do // Iterate through classes
begin
I := pos( ',', S + ',' ) ;
C := copy( S, 1, I - 1 ) ;
S := copy( S, I + 1, length( S ) ) ;
if( C <> '' ) then // Ignore nulls (,,)
begin
I := Class_Index( C ) ;
if( I = -1 ) then // Invalid class
begin
fillchar( Classes, sizeof( Classes ), -1 ) ; // Enable all classes
break ;
end ;
Classes[ I ] := True ;
end ;
end ;
end ;
This function is called in the above code. It sets the values of a class array from
a string or list of values. If an unknown class is found, the entire array is set
to true.
function Class_Index( S : string ) : integer ;
begin
Result := -1 ;
S := lowercase( S ) ;
if( S = 'general' ) then
begin
Result := BRK_C_GENERAL ;
end else
if( S = 'phone' ) then
begin
Result := BRK_C_PHONE;
end else
if( S = 'mail' ) then
begin
Result := BRK_C_MAIL ;
end else
if( ( S = 'ucl' ) or ( S = 'dcl' ) ) then
begin
Result := BRK_C_UCL ;
end else
if( S = 'queue' ) then
begin
Result := BRK_C_QUEUE ;
end else
if( S = 'shutdown' ) then
begin
Result := BRK_C_SHUTDOWN ;
end else
if( S = 'urgent' ) then
begin
Result := BRK_C_URGENT ;
end else
if( S = 'user1' ) then
begin
Result := BRK_C_USER1 ;
end else
if( S = 'user2' ) then
begin
Result := BRK_C_USER2 ;
end else
if( S = 'user3' ) then
begin
Result := BRK_C_USER3 ;
end else
if( S = 'user4' ) then
begin
Result := BRK_C_USER4 ;
end else
if( S = 'user5' ) then
begin
Result := BRK_C_USER5 ;
end else
if( S = 'user6' ) then
begin
Result := BRK_C_USER6 ;
end else
if( S = 'user7' ) then
begin
Result := BRK_C_USER7 ;
end else
if( S = 'user8' ) then
begin
Result := BRK_C_USER8 ;
end else
if( S = 'user9' ) then
begin
Result := BRK_C_USER9 ;
end else
if( S = 'user10' ) then
begin
Result := BRK_C_USER10 ;
end else
if( S = 'user11' ) then
begin
Result := BRK_C_USER11 ;
end else
if( S = 'user12' ) then
begin
Result := BRK_C_USER12 ;
end else
if( S = 'user13' ) then
begin
Result := BRK_C_USER13 ;
end else
if( S = 'user14' ) then
begin
Result := BRK_C_USER14 ;
end else
if( S = 'user15' ) then
begin
Result := BRK_C_USER15 ;
end else
if( S = 'user16' ) then
begin
Result := BRK_C_USER16 ;
end ;
end ; // Class_Index
function Class_Name( I : integer ) : string ;
begin
Result := '' ;
case I of
BRK_C_GENERAL : Result := 'general' ;
BRK_C_PHONE : Result := 'phone' ;
BRK_C_MAIL : Result := 'mail' ;
BRK_C_UCL : Result := 'ucl' ;
BRK_C_QUEUE : Result := 'queue' ;
BRK_C_SHUTDOWN : Result := 'shutdown' ;
BRK_C_URGENT : Result := 'urgent' ;
BRK_C_USER1 : Result := 'user1' ;
BRK_C_USER2 : Result := 'user2' ;
BRK_C_USER3 : Result := 'user3' ;
BRK_C_USER4 : Result := 'user4' ;
BRK_C_USER5 : Result := 'user5' ;
BRK_C_USER6 : Result := 'user6' ;
BRK_C_USER7 : Result := 'user7' ;
BRK_C_USER8 : Result := 'user8' ;
BRK_C_USER9 : Result := 'user9' ;
BRK_C_USER10 : Result := 'user10' ;
BRK_C_USER11 : Result := 'user11' ;
BRK_C_USER12 : Result := 'user12' ;
BRK_C_USER13 : Result := 'user13' ;
BRK_C_USER14 : Result := 'user14' ;
BRK_C_USER15 : Result := 'user15' ;
BRK_C_USER16 : Result := 'user16' ;
end ;
end ; // Class_Name
These functions are used above to convert between message class names and integer
offset values.
PSCAN_FULL_IMAGE: // Full Image name //NEW
begin
Result := Process.Full_Image_Name
end ;
This code is added to the TFilter.Get_Filter_Value method in the USC.
This code is not in VMS, but UOS has it to enable us to filter on image names. Note that
the full image name contains the node/device/path/name/extension/version instead
of just the file's name for the normal image name.
function Normalize_Filename( S : string ) : string ;
var Node, Access, Secondary_Node, Device, Path, Name, Extension, Version : string ;
begin
Parse_Filename( S,
Node, Access, Secondary_Node, Device, Path, Name, Extension, Version ) ;
S := Device + Path + '\' + Name + '.' + Extension ;
if( Version <> '' ) then
begin
S := S + ';' + Version ;
end ;
if( Node <> '' ) then
begin
S := Node + '::' + S ;
end ;
Result := S ;
end ;
This function in PasStarlet parses a filename and then puts it back together. If a logical is
used, the call to Parse_Filename will translate it, so the value that
this function returns is the fully qualified physical filename including node, path,
etc.
In the next article, we will look at the system services that support mailboxes.
|