1 Introduction
2 Ground Rules

Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class

The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up

The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup

Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API

Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O

UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation

UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services

UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN

CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND

Glossary/Index


Downloads

CREPRC, part 2

In the last article, we documented the CREPRC system service. In this article, we will examine the code to implement it.

function SYS_CREPRC( pidadr, image, input, output, error, prvadr, quota, prcnam,
    baspri, uic, mbxunt, stsflg, itmlst, node, home_rad : int64 ) : int64 ;

var Status : int64 ;
    SysRequest : TS6I9_Request ;

begin
    fillchar( SysRequest, sizeof( SysRequest ), 0 ) ;
    Status := 0 ;
    SysRequest.Request.Subsystem :=  UOS_Subsystem_USC ;
    SysRequest.Request.Request := UOS_USC_Create_Process ;
    SysRequest.Request.Length := sizeof( SysRequest ) - sizeof( Sysrequest.Request ) ;
    SysRequest.Request.Status := integer( @Status ) ;
    SysRequest.Integer1 := pidadr ;
    if( Image <> 0 ) then
    begin
        SysRequest.SRB1 := PSRB( Image )^ ;
    end ;
    if( Input <> 0 ) then
    begin
        SysRequest.SRB2 := PSRB( Input )^ ;
    end ;
    if( Output <> 0 ) then
    begin
        SysRequest.SRB3 := PSRB( Output )^ ;
    end ;
    if( Error <> 0 ) then
    begin
        SysRequest.SRB4 := PSRB( Error )^ ;
    end ;
    SysRequest.Integer2 := prvadr ;
    SysRequest.Integer3 := quota ;
    if( prcnam <> 0 ) then
    begin
        SysRequest.SRB5 := PSRB( prcnam )^ ;
    end ;
    SysRequest.Integer4 := baspri ;
    SysRequest.Integer5 := uic ;
    SysRequest.Integer6 := mbxunt ;
    SysRequest.Integer7 := stsflg ;
    SysRequest.Integer8 := itmlst ;
    if( node <> 0 ) then
    begin
        SysRequest.SRB6 := PSRB( node )^ ;
    end ;
    SysRequest.Integer9 := home_rad ;
    Call_To_Ring0( integer( @SysRequest ) ) ;
    Result := Status ;
end ;
This function was added to the SYS module as a wrapper to the CREPRC service.

        UOS_USC_Create_Process:
            begin
                UE := Enter_System_Call( Request, SReq, PID, MMC, 
                    sizeof( S6I9_Request ) - sizeof( SReq ), Address ) ;
                if( UE <> nil ) then
                begin
                    Set_Last_Error( UE ) ;
                    exit ;
                end ;
                try
                    S6I9_Request := PS6I9_Request( Address ) ;
                    Create_SubProcess( S6I9_Request.Integer1, S6I9_Request.SRB1,
                        S6I9_Request.SRB2, S6I9_Request.SRB3,
                        S6I9_Request.SRB4, S6I9_Request.Integer2,
                        S6I9_Request.Integer3, S6I9_Request.SRB4,
                        S6I9_Request.Integer4, S6I9_Request.Integer5,
                        S6I9_Request.Integer6, S6I9_Request.Integer7,
                        S6I9_Request.Integer8, S6I9_Request.SRB5,
                        S6I9_Request.Integer9 ) ;
                finally
                    Exit_System_Call( Request, PID, MMC, 
                        sizeof( TItem_Request ) - sizeof( SReq ) ) ;
                end ;
            end ;
This code is added to the USC.API method to handle CREPRC calls.

function TUSC.Create_SubProcess( pidadr : int64 ;
    image, input, output, error : TSRB ; prvadr, quota : int64 ; prcnam : TSRB ;
    baspri, uic, mbxunt, stsflg, itmlst : int64 ; node : TSRB ;
    home_rad : int64 ) : int64 ;

var I : cardinal ;
    New_Process, Process : TProcess ;
    User : Tuser ;
    QuotaB : TQuota_Block ;
    Status : integer ;
    Base_Name, sImage, sName, sInput, sOutput, sError : string ;
    Resource : TResource ;
    RNG : TSRNG32 ;
    This_PID : TPID ;
    Value : cardinal ;

begin
    // Setup...
    Result := 0 ; // Assume success
    This_PID := _Kernel.PID ;
    Process := Get_Process( This_PID ) ;
    if( Process = nil ) then
    begin
        exit ;
    end ;
    User := Process.User ;
This USC routine handles the CREPRC system service. The first thing we do is get the current process PID and process instance.

    // Check quotas...
    if( User.Rec.Quotas.PRCLM <> 0 ) then // There is a limit
    begin
        if( User.Usage.PRCLM >= User.Rec.Quotas.PRCLM ) then
        begin
            Generate_Exception( UOSErr_Quota_Exceeded ) ;
            exit ;
        end ;
    end ; // if( Process.Rec.Quotas.PRCLM <> 0 )
    if( User.Rec.Quotas.MAXJOBS <> 0 ) then
    begin
        if( User.Usage.MAXJOBS >= User.Rec.Quotas.MAXJOBS ) then
        begin
            Generate_Exception( UOSErr_Quota_Exceeded ) ;
            exit ;
        end ;
    end ;
Next we check to make sure we aren't creating a process that causes an exceeded quota.

    // Get flags...
    if( stsflg <> 0 ) then
    begin
        stsflg := Get_User_Integer( _Kernel, This_PID, stsflg, Status ) ;
        if( Status = UE_Error ) then
        begin
            if( MMC.Last_Error = nil ) then
            begin
                Generate_Exception( UOSErr_Memory_Address_Error ) ;
            end ;
            exit ;
        end ;
    end ;

    // Validate permissions...
    if( ( stsflg and PRC_M_TRUSTED ) = 0 ) then // Not trusted creation
    begin
        if( ( Process.User.Flags and UAI_V_CAPTIVE ) <> 0 ) then // Captive account
        begin
            Generate_Exception( SS_NOPRIV ) ;
            exit ;
        end ;
    end ;
    if( ( stsflg and PRC_M_NETWRK ) <> 0 ) then
    begin
        if( ( Process.Current_Privileges and IMPERSONATE ) = 0 ) then
        begin
            Generate_Exception( SS_NOPRIV ) ;
            exit ;
        end ;
    end ;
    if( ( stsflg and PRC_M_BATCH ) <> 0 ) then
    begin
        if( ( Process.Current_Privileges and IMPERSONATE ) = 0 ) then
        begin
            Generate_Exception( SS_NOPRIV ) ;
            exit ;
        end ;
    end ;
    if( ( stsflg and PRC_M_NOACNT ) <> 0 ) then
    begin
        if( ( Process.Current_Privileges and ACNT ) = 0 ) then
        begin
            Generate_Exception( SS_NOPRIV ) ;
            exit ;
        end ;
    end ;
    if( ( stsflg and PRC_M_PSWAPM ) <> 0 ) then
    begin
        if( ( Process.Current_Privileges and PSWAPM ) = 0 ) then
        begin
            Generate_Exception( SS_NOPRIV ) ;
            exit ;
        end ;
    end ;
    if( ( stsflg and PRC_M_TCB ) <> 0 ) then
    begin
        if( ( Process.Current_Privileges and IMPERSONATE ) = 0 ) then
        begin
            Generate_Exception( SS_NOPRIV ) ;
            exit ;
        end ;
    end ;

    sInput := trim( Get_User_String_As_String( _Kernel, This_PID, Input, Status ) ) ;
    if( Status = UE_Error ) then
    begin
        if( MMC.Last_Error = nil ) then
        begin
            Generate_Exception( UOSErr_Memory_Address_Error ) ;
        end ;
        exit ;
    end ;
    sOutput := trim( Get_User_String_As_String( _Kernel, This_PID, Output, Status ) ) ;
    if( Status = UE_Error ) then
    begin
        if( MMC.Last_Error = nil ) then
        begin
            Generate_Exception( UOSErr_Memory_Address_Error ) ;
        end ;
        exit ;
    end ;
    sError := trim( Get_User_String_As_String( _Kernel, This_PID, Error, Status ) ) ;
    if( Status = UE_Error ) then
    begin
        if( MMC.Last_Error = nil ) then
        begin
            Generate_Exception( UOSErr_Memory_Address_Error ) ;
        end ;
        exit ;
    end ;
Next we get some parameters and check for privileges that are required for certain operations.

    // Handle UIC...
    if( UIC <> 0 ) then
    begin
        UIC := Get_User_Integer( _Kernel, This_PID, UIC, Status ) ;
        if( Status = UE_Error ) then
        begin
            if( MMC.Last_Error = nil ) then
            begin
                Generate_Exception( UOSErr_Memory_Address_Error ) ;
            end ;
            exit ;
        end ;
    end ;
    if( UIC = 0 ) then
    begin
        UIC := Process.User.UIC ;
    end ;
    if( UIC <> Process.User.UIC ) then // Creating a process for a different UIC
    begin
        if( ( Process.Current_Privileges and ( IMPERSONATE or CMKRNL ) ) = 0 ) then
        begin
            Generate_Exception( SS_NOPRIV ) ;
            exit ;
        end ;

        // Creating a detached process...
        if(
            ( Process.Quotas[ PQL_MAXDETJOBS ] <> 0 )
            and
            ( Process.Usage[ PQL_MAXDETJOBS ] >= Process.Quotas[ PQL_MAXDETJOBS ] )
          ) then
        begin
            Generate_Exception( UOSErr_Exceeded_Process_Limit ) ;
            exit ;
        end ;
    end ;
Next we get the UIC. If it is 0 or points to a value of 0, we set it to the user of the current process. If the UIC is different from the user of the current process, we are creating a detached process. In that case, we need to have the appropriate privileges and not exceed the MAXDETJOBS quota.

    // Create the subprocess...
    Result := Create_Process( UIC, This_PID, Process.Job_Type ) ; // Create process
    if( Result = 0 ) then
    begin
        Generate_Exception( UOSErr_Out_Of_Resources ) ;
        exit ;
    end ;
    New_Process := Get_Process( Result ) ;
    if( pidadr <> 0 ) then
    begin
        Status := Write_User_int64( _Kernel, This_PID, pidadr, Result ) ;
        if( Status = UE_Error ) then
        begin
            if( MMC.Last_Error = nil ) then
            begin
                Generate_Exception( UOSErr_Memory_Address_Error ) ;
            end ;
            exit ;
        end ;
    end ;
    if( UIC <> Process.User.UIC ) then // Creating a detached process...
    begin
        Process.Usage[ PQL_MAXDETJOBS ] := Process.Usage[ PQL_MAXDETJOBS ] + 1 ;
    end ;
Next we call the Create_Process (which we covered in a previous article) which creates the process instance. If an address was provided, we write the new PID to that address. Then we add to the process' MAXDETJOBS usage.

    // Copy symbol table...
    if( ( stsflg and PRC_M_CLONE_SYMBOLS ) <> 0 ) then
    begin
        New_Process.Symbols.Copy_From( Process.Symbols ) ;
    end ;

    // Apply toward quotas...
    if( User.Rec.Quotas.PRCLM <> 0 ) then // There is a limit
    begin
        inc( User.Usage.PRCLM ) ;
    end ; // if( Process.Rec.Quotas.PRCLM <> 0 )
    if( User.Rec.Quotas.MAXJOBS <> 0 ) then
    begin
        inc( User.Usage.MAXJOBS ) ;
    end ;
Next we clone the symbol table, if requested. Then we increase the usages for the PRCLM and MAXJOBS quotas.

    // Handle priority...
    if( BasPri <> 0 ) then
    begin
        Get_User_Data( _Kernel, This_PID, BasPri, 1, BasPri, Status ) ;
        BasPri := BasPri and 255 ;
        if( Status = UE_Error ) then
        begin
            if( MMC.Last_Error = nil ) then
            begin
                Generate_Exception( UOSErr_Memory_Address_Error ) ;
            end ;
            exit ;
        end ;
    end ;
    if( BasPri = 0 ) then // Not specified
    begin
        BasPri := Process.Priority ;
    end ;
    if( BasPri > Process.Priority ) then // Requesting elevated priority
    begin
        if( ( Process.Current_Privileges and ALTPRI ) = 0 ) then // No privilege
        begin
            BasPri := Process.Priority ; // Set to caller's priority
        end ;
    end ;
Now we obtain the base priority. If the address is 0 or the value is 0, we use the priority of the current process. If specified and the priority is less than or equal to the priority of the current process, the new process is given the specified priority. Otherwise, the ALTPRI privilege is required.

    // Set privileges...
    New_Process.Current_Privileges := Process.Current_Privileges ;
    if( prvadr <> 0 ) then
    begin
        New_Process.Current_Privileges := Get_User_Integer( _Kernel, This_PID, prvadr, Status ) ;
        if( ( Process.Current_Privileges and SETPRV ) = 0 ) then // No SETPRV privilege
        begin
            New_Process.Current_Privileges :=
                New_Process.Current_Privileges and Process.Current_Privileges ;
                // Limit to caller's privileges
        end ;
    end ;
Next we set the new process privileges if they were specified. Unless the calling process has the SETPRV privilege, the specified privileges are limited to the current process' privilege mask (via an and operation) without returning an error.

    // Set quotas...
    if( quota <> 0 ) then
    begin
        // Get first block...
        Get_User_Data( _Kernel, This_PID, Quota, sizeof( QuotaB ), QuotaB, Status ) ;
        if( Status = UE_Error ) then
        begin
            if( MMC.Last_Error = nil ) then
            begin
                Generate_Exception( UOSErr_Memory_Address_Error ) ;
            end ;
            exit ;
        end ;
        while( QuotaB.Quota <> PQL_LISTEND ) do // until end of list
        begin
            Value := QuotaB.Value ;
            if( Value <> 0 ) then
            begin
                case QuotaB.Quota of
                    Quota_ASTLM,
                    Quota_BIOLM,
                    Quota_BYTLM,
                    Quota_CPUTIM,
                    Quota_DIOLM,
                    Quota_ENQLM,
                    Quota_FILLM,
                    Quota_MAXACCTJOBS,
                    Quota_MAXJOBS,
                    Quota_PGFLQUOTA,
                    Quota_TQELM,
                    Quota_WSEXTENT,
                    Quota_PRCLM,
                    Quota_THREADLM,
                    PQL_JTQUOTA,
                    PQL_WSDEFAULT,
                    PQL_WSQUOTA :
                        begin
                            if( ( Process.Current_Privileges and ( IMPERSONATE or CMKRNL ))=0 ) then
                            begin
                                // No privileges...
                                if( Value > Process.Quotas[ QuotaB.Quota ] ) then
                                begin
                                    Value := Process.Quotas[ QuotaB.Quota ] ;
                                end ;
                            end ;
                            New_Process.Quotas[ QuotaB.Quota ] := Value ;
                        end ;
                    else
                        begin
                            Generate_Exception( UOSErr_Invalid_Quota_List ) ;
                            exit ;
                        end ;
                end ;
            end ;

            // Get next quota block...
            Get_User_Data( _Kernel, This_PID, Quota, sizeof( QuotaB ), QuotaB, Status ) ;
            if( Status = UE_Error ) then
            begin
                if( MMC.Last_Error = nil ) then
                begin
                    Generate_Exception( UOSErr_Memory_Address_Error ) ;
                end ;
                exit ;
            end ;
        end ; // if( Status = UE_Error )
    end ; // if( quota <> 0 )
If a quota address was specified, we process through the list until we find a PQL_LISTEND item. If the item isn't recognized, we exit with an error. Otherwise, we set the quota. If the process has IMPERSONATE or CMKRNL privileges, we do no checks, since those privileges allow any quota to be exceeded. Otherwise we don't allow the new process to have a higher quota than the current process. Keep in mind that a quota value of 0 means "unlimited".

    // Get image...
    sImage := trim( Get_User_String_As_String( _Kernel, This_PID, Image, Status ) ) ;
    if( Status = UE_Error ) then
    begin
        if( MMC.Last_Error = nil ) then
        begin
            Generate_Exception( UOSErr_Memory_Address_Error ) ;
        end ;
        exit ;
    end ;
    if( sImage = '' ) then // No image specified
    begin
        sImage := Grab_String( New_Process.User.Rec.Shell ) ;
        if( ( sImage = '' ) or ( not FiP.File_Exists( This_PID, sImage ) ) ) then
        begin
            sImage := 'sys$system:ucl.exe' ; // Default to UCL
        end ;
    end ;
Next we get the image for the new process to run. If it is not specified or null, we default it to the default shell for the user.

    sName := trim( Get_User_String_As_String( _Kernel, This_PID, prcnam, Status ) ) ;
    if( SName = '' ) then // No name specified
    begin
        Base_Name := Process.User.Name ;
        if( ( stsflg and PRC_M_NONRANDOM ) <> 0 ) then
        begin
            I := 1 ;
            sName := Base_Name + inttostr( I ) ;
            while( Process_By_Name( sName ) <> nil ) do
            begin
                inc( I ) ;
                sName := Base_Name + '_' + inttostr( I ) ;
            end ;
        end else
        begin
            RNG.Set_X( HAL.Timestamp and $FFFFFFFF ) ;
            sName := Base_Name + '_' + inttostr( RNG.Generate ) ;
            while( Process_By_Name( sName ) <> nil ) do
            begin
                sName := Base_Name + '_' + inttostr( RNG.Generate ) ;
            end ;
        end ;
    end else
    if( Process_By_Name( sName ) <> nil ) then
    begin
        Generate_Exception( UOSErr_Duplicate_Name ) ;
        exit ;
    end ;
Next, we get the specified process name. If one was specified and already exists, we exit with an error. Otherwise, we generate one. As described in the documentation in the previous article, if the PRC_M_NONRANDOM flag is set, we try constructing the name with an incrementing value until an unused name is found. Otherwise, we generate a random number and loop until we come up with an unused process name. Note that VMS generates a hexadecimal value, but we use a decimal value to avoid the overhead of converting it to hexadecimal, since there isn't a good reason to do the convesion (on VMS, it is probably to reduce the maximum length of process names - but UOS has no length limit for process names so it isn't a consideration).

    if( ( stsflg and PRC_M_BATCH ) <> 0 ) then
    begin
        New_Process.Status := New_Process.Status or PCB_V_BATCH ;
    end ;

    _Kernel.USC.Run( New_Process._PID, PChar( sImage ), '', 0, False ) ;
    if( ( stsflg and PRC_M_HIBER ) <> 0 ) then
    begin
        New_Process.State := SCH_C_HIB ;
        New_Process.Status := New_Process.Status or PCB_V_HIBER ;
    end ;
    if( ( stsflg and PRC_M_INTER ) <> 0 ) then
    begin
        New_Process.Status := New_Process.Status or PCB_V_INTER ;
    end ;
    if( ( stsflg and PRC_M_NETWRK ) <> 0 ) then
    begin
        New_Process.Status := New_Process.Status or PCB_V_NETWRK ;
    end ;
    if( ( stsflg and PRC_M_NOACNT ) <> 0 ) then
    begin
        New_Process.Status := New_Process.Status or PCB_V_NOACNT ;
    end ;
    if( ( stsflg and PRC_M_PSWAPM ) <> 0 ) then
    begin
        New_Process.Status := New_Process.Status or PCB_V_PSWAPM ;
    end ;
    Process.Creation_Flags := stsflg ;
Next we convert from CREPRC flags to process state flags. We also store the flags in the Creation_Flags data.

    if( UIC = Process.User.UIC ) then // Not creating a detached process
    begin
        // Assign standard devices...
        if( sInput = '' ) then
        begin
            Resource := TResource( Process.Get_Sys_Input ) ;
            Resource.Attach ;
        end else
        begin
            Resource := FIP.Create_File_Handle( New_Process._PID, PChar( sInput ), 0 ) ;
            if( Resource = nil ) then
            begin
                exit ;
            end ;
        end ;
        _Kernel.USC.Assign_Channel( New_Process._PID, RH_SysInput, int64( Resource ) ) ;

        if( sOutput = '' ) then
        begin
            Resource := TResource( Process.Get_Sys_Output ) ;
            Resource.Attach ;
        end else
        begin
            Resource := FIP.Create_File_Handle( New_Process._PID, PChar( sOutput ), 0 ) ;
            if( Resource = nil ) then
            begin
                exit ;
            end ;
        end ;
        _Kernel.USC.Assign_Channel( New_Process._PID, RH_SysOutput, int64( Resource ) ) ;

        if( sError = '' ) then
        begin
            Resource := TResource( Process.Get_Sys_Error ) ;
            Resource.Attach ;
        end else
        begin
            Resource := FIP.Create_File_Handle( New_Process._PID, PChar( sError ), 0 ) ;
            if( Resource = nil ) then
            begin
                exit ;
            end ;
        end ;
        _Kernel.USC.Assign_Channel( New_Process._PID, RH_SysError, int64( Resource ) ) ;
    end ;
end ; // TUSC.Create_Subprocess
Finally, if we are creating a subprocess, we assign the default sys$input, sys$output, and sys$error channels (detached processes don't have any of them assigned). For each one, we check to see if it was specified. If not, we grab the corresponding resource from the current process, otherwise we get a new file handle for what was specified. Then we assign the channel with the new resource.

type TQuota_Block = packed record
                        Quota : byte ;
                        Value : cardinal ;
                    end ;
This is the quota block definition used above.

                        property Quotas[ Index : integer ] : cardinal
                            read Get_Quota
                            write Set_Quota ;
                        property Usage[ Index : integer ] : cardinal
                            read Get_Usage
                            write Set_Usage ;
These new properties are added to TProcess to make it easier to access quotas and usages, as we've seen in the above code.

function TProcess.Get_Usage( Index : integer ) : cardinal ;

begin
    case Index of
        Quota_ASTLM : Result := _Usage.ASTLM ;
        Quota_BIOLM : Result := _Usage.BIOLM ;
        Quota_BYTLM : Result := _Usage.BYTLM ;
        Quota_CPUTIM : Result := _Usage.CPUTIM ;
        Quota_DIOLM : Result := _Usage.DIOLM ;
        Quota_ENQLM : Result := _Usage.ENQLM ;
        Quota_FILLM : Result := _Usage.FILLM ;
        Quota_MAXACCTJOBS : Result := _Usage.MAXACCTJOBS ;
        Quota_MAXJOBS : Result := _Usage.MAXJOBS ;
        Quota_PGFLQUOTA : Result := _Usage.PGFLQUOTA ;
        Quota_TQELM : Result := _Usage.TQELM ;
        Quota_WSEXTENT : Result := _Usage.WSEXTENT ;
        Quota_PRCLM : Result := _Usage.PRCLM ;
        Quota_THREADLM : Result := _Usage.THREADLM ;
        PQL_JTQUOTA : Result := _Usage.JTQUOTA ;
        PQL_WSDEFAULT : Result := _Usage.WSDEFAULT ;
        PQL_WSQUOTA : Result := _Usage.WSQUO ;
        PQL_MAXDETJOBS : Result := _Usage.MAXDETJOBS ;
        else Result := 0 ;
    end ;
end ;


procedure TProcess.Set_Usage( Index : integer ; Value : cardinal ) ;

begin
    case Index of
        Quota_ASTLM : _Usage.ASTLM := Value ;
        Quota_BIOLM : _Usage.BIOLM := Value ;
        Quota_BYTLM : _Usage.BYTLM := Value ;
        Quota_CPUTIM : _Usage.CPUTIM := Value ;
        Quota_DIOLM : _Usage.DIOLM := Value ;
        Quota_ENQLM : _Usage.ENQLM := Value ;
        Quota_FILLM : _Usage.FILLM := Value ;
        Quota_MAXACCTJOBS : _Usage.MAXACCTJOBS := Value ;
        Quota_MAXJOBS : _Usage.MAXJOBS := Value ;
        Quota_PGFLQUOTA : _Usage.PGFLQUOTA := Value ;
        Quota_TQELM : _Usage.TQELM := Value ;
        Quota_WSEXTENT : _Usage.WSEXTENT := Value ;
        Quota_PRCLM : _Usage.PRCLM := Value ;
        Quota_THREADLM : _Usage.THREADLM := Value ;
        PQL_MAXDETJOBS : _Usage.MAXDETJOBS := Value ;
        PQL_JTQUOTA : _Usage.JTQUOTA := Value ;
        PQL_WSDEFAULT : _Usage.WSDEFAULT := Value ;
        PQL_WSQUOTA : _Usage.WSQUO := Value ;
    end ;
end ;


function TProcess.Get_Quota( Index : integer ) : cardinal ;

begin
    case Index of
        Quota_ASTLM : Result := _Quotas.ASTLM ;
        Quota_BIOLM : Result := _Quotas.BIOLM ;
        Quota_BYTLM : Result := _Quotas.BYTLM ;
        Quota_CPUTIM : Result := _Quotas.CPUTIM ;
        Quota_DIOLM : Result := _Quotas.DIOLM ;
        Quota_ENQLM : Result := _Quotas.ENQLM ;
        Quota_FILLM : Result := _Quotas.FILLM ;
        Quota_MAXACCTJOBS : Result := _Quotas.MAXACCTJOBS ;
        Quota_MAXJOBS : Result := _Quotas.MAXJOBS ;
        Quota_PGFLQUOTA : Result := _Quotas.PGFLQUOTA ;
        Quota_TQELM : Result := _Quotas.TQELM ;
        Quota_WSEXTENT : Result := _Quotas.WSEXTENT ;
        Quota_PRCLM : Result := _Quotas.PRCLM ;
        Quota_THREADLM : Result := _Quotas.THREADLM ;
        PQL_MAXDETJOBS : Result := _Quotas.MAXDETJOBS ;
        PQL_JTQUOTA : Result := _Quotas.JTQUOTA ;
        PQL_WSDEFAULT : Result := _Quotas.WSDEFAULT ;
        PQL_WSQUOTA : Result := _Quotas.WSQUO ;
        else Result := 0 ;
    end ;
end ;


procedure TProcess.Set_Quota( Index : integer ; Value : cardinal ) ;

begin
    case Index of
        Quota_ASTLM : _Quotas.ASTLM := Value ;
        Quota_BIOLM : _Quotas.BIOLM := Value ;
        Quota_BYTLM : _Quotas.BYTLM := Value ;
        Quota_CPUTIM : _Quotas.CPUTIM := Value ;
        Quota_DIOLM : _Quotas.DIOLM := Value ;
        Quota_ENQLM : _Quotas.ENQLM := Value ;
        Quota_FILLM : _Quotas.FILLM := Value ;
        Quota_MAXACCTJOBS : _Quotas.MAXACCTJOBS := Value ;
        Quota_MAXJOBS : _Quotas.MAXJOBS := Value ;
        Quota_PGFLQUOTA : _Quotas.PGFLQUOTA := Value ;
        Quota_TQELM : _Quotas.TQELM := Value ;
        Quota_WSEXTENT : _Quotas.WSEXTENT := Value ;
        Quota_PRCLM : _Quotas.PRCLM := Value ;
        Quota_THREADLM : _Quotas.THREADLM := Value ;
        PQL_MAXDETJOBS : _Usage.MAXDETJOBS := Value ;
        PQL_JTQUOTA : _Quotas.JTQUOTA := Value ;
        PQL_WSDEFAULT : _Quotas.WSDEFAULT := Value ;
        PQL_WSQUOTA : _Quotas.WSQUO := Value ;
    end ;
end ;
These are the property handlers for Usage and Quota.

    Process._User := UIC ;
    Process._Quotas := User.Quotas ;
    Process.Current_Privileges := User.Privileges ;
This code is added to the end of the USC.Force_Login method. This causes the process quotas and privileges to be set to their initial states.

    // Delete all children processes...
    for I := 0 to _Children.Count - 1 do
    begin
        Child := Get_Process( _Children[ I ] ) ;
        Child.Free ;
    end ;
Now that we are dealing with subprocesses, it is time to add general support for them. This code is added to the TProcess destructor. When a process is terminated, we must first terminate all subprocesses by looping through the _Children list and deleting each child process.

    if( Parent = 0 ) then // Job table needed
    begin
        Process._Job_Symbols :=
            TSymbol_Table.Create( '$JOB$' + inttostr( Process._PID ) ) ;
    end else
    begin
        Parent_Process := Get_Process( Parent ) ;
        if( Parent_Process <> nil ) then
        begin
            Parent_Process._Children.Add( Process._PID ) ;
            Process._Job_Symbols := Parent_Process._Job_Symbols ;
        end ;
    end ;
We make a change to the Create_Process function so that if a parent PID is provided, we add the new process to the parent's children list. We also make sure the child process job symbols point to the job's symbol table.

var Current_Users : TList = nil ; 
    // List of current users (those associated with one or more processes)
Since multiple processes can have the same user, and each process can affect the user-level quotas, we need a way to "share" a user object between multipe processes. Each process could have a separate TUser instance, but altering a user quota/usage in one wouldn't alter it in another and then when a process is using a quota in its own TUser instance wouldn't be using the current quota values. So we want the same TUser instance shared with all the processes for that user. This list is used to keep a single instance of each user currently associated with one or more processes.

    _Kernel.Lock( Spinlock_Current_Users ) ;
    User.Decrement_Count ;
    if( User.Count = 0 ) then
    begin
        Current_Users.Remove( User ) ;
    end ;
    _Kernel.Unlock( Spinlock_Current_Users ) ;
At the end of the TProcess destructor, we decrement the process count in TUser (which is a count specifically in the class for this purpose). If the count reaches 0, no more processes are associated with the user and we delete the user instance from the list. We surround this operation with spinlock protection.

    if( Current_Users = nil ) then
    begin
        Current_Users := TList.Create ;
    end ;
    _Kernel.Lock( Spinlock_Current_Users ) ;
    I := Current_User_IDs.ItemIndex( _User ) ;
    if( I = -1 ) then // User not loaded...
    begin
        I := Current_Users.Count ;
        Current_Users.Add( Get_User( _User ) ) ;
    end ;
    .
    .
    .
    _Kernel.Unlock( Spinlock_Current_Users ) ;
This code is added to the start of the TProcess.User to initialize the list, if needed, and add the process' user to the list if not already present. At the end of the routine, we call User.Increment_Count and release the spinlock.

var System_Locks : int64 = 0 ;

procedure TKernel.Lock( ID : integer ) ;

begin
    HAL.Test_And_Set( int64( @System_Locks ), ID - 1 ) ;
end ;


procedure TKernel.Unlock( ID : integer ) ;

begin
    HAL.Clear_Flag( int64( @System_Locks ), ID - 1 ) ;
end ;
In one previous article, we looked at code that used a spinlock. It was handled by the SSC component and the spinlock was identified by a string. Upon further reflection, I decided better of it. String operations are relatively expensive operations on any CPU, and we want to minimize the time surrounding the setting, resetting, and checking of spinlocks since the whole point of locks is to handle contention for resources. The more overhead that is associated with locks, the slower the system becomes when contention occurs. Thus, we use an integer identifier instead of a string.

Moving the lock/unlock from the SSC to the kernel was more of a philosophical change. The kernel is the central part of the executive and since all components may want to use spinlocks, it seemed to make more sense to me to have it in the kernel. But it also improves performance a tiny bit. All executive components have a pointer to the kernel instance, but to get to the SSC to handle spinlocks means that we have to request the SSC instance from the kernel. This change eliminates that extra step.

The actual code is very simple, as it only makes calls to the HAL. This is necessary since the HAL is intimately familiar with the hardware and knows the best way to handle the operation atomically. For instance, on Intel CPUs, a LOCK instruction prefix could be used. On other CPUs, different mechanisms may need to be used. But the point is that these details are left to the HAL rather than the kernel.

procedure TSymbol_Table.Copy_From( Source : TUOS_Symbol_Table ) ;

var I, Index, Loop : integer ;
    New_Symbols, Symbols : TStringList ;
    Src : TSymbol_Table ;
    This_Symbol : TSymbol ;

begin
    if( Source = nil ) then
    begin
        exit ;
    end ;
    Src := TSymbol_Table( Source ) ;
    for Loop := 0 to Src.List.Count - 1 do
    begin
        Symbols := TStringList( Src.List.Objects[ Loop ] ) ;
        New_Symbols := TStringList.Create ;
        New_Symbols.Assign( Symbols ) ;
        List.AddObject( Src.List[ Loop ], New_Symbols ) ;
    end ; // for Loop := 0 to Source.List.Count - 1
end ; // TSymbol_Table.Copy_From
Finally, we add this method to the TSymbol_Table class to handle the quick copy of another string table to the current instance. If the source table is nil, we exit immediately. Otherwise, we loop through the source table's list, creating new string lists and copying from the source.

In the next article, we will start looking at the COPY CUSP.

 

Copyright © 2023 by Alan Conroy. This article may be copied in whole or in part as long as this copyright is included.