1 Introduction
2 Ground Rules

Building a File System
3 File Systems
4 File Content Data Structure
5 Allocation Cluster Manager
6 Exceptions and Emancipation
7 Base Classes, Testing, and More
8 File Meta Data
9 Native File Class
10 Our File System
11 Allocation Table
12 File System Support Code
13 Initializing the File System
14 Contiguous Files
15 Rebuilding the File System
16 Native File System Support Methods
17 Lookups, Wildcards, and Unicode, Oh My
18 Finishing the File System Class

The Init Program
19 Hardware Abstraction and UOS Architecture
20 Init Command Mode
21 Using Our File System
22 Hardware and Device Lists
23 Fun with Stores: Partitions
24 Fun with Stores: RAID
25 Fun with Stores: RAM Disks
26 Init wrap-up

The Executive
27 Overview of The Executive
28 Starting the Kernel
29 The Kernel
30 Making a Store Bootable
31 The MMC
32 The HMC
33 Loading the components
34 Using the File Processor
35 Symbols and the SSC
36 The File Processor and Device Management
37 The File Processor and File System Management
38 Finishing Executive Startup

Users and Security
39 Introduction to Users and Security
40 More Fun With Stores: File Heaps
41 File Heaps, part 2
42 SysUAF
43 TUser
44 SysUAF API

Terminal I/O
45 Shells and UCL
46 UOS API, the Application Side
47 UOS API, the Executive Side
48 I/O Devices
49 Streams
50 Terminal Output Filters
51 The TTerminal Class
52 Handles
53 Putting it All Together
54 Getting Terminal Input
55 QIO
56 Cooking Terminal Input
57 Putting it all together, part 2
58 Quotas and I/O

UCL
59 UCL Basics
60 Symbol Substitution
61 Command execution
62 Command execution, part 2
63 Command Abbreviation
64 ASTs
65 Expressions, Part 1
66 Expressions, Part 2: Support code
67 Expressions, part 3: Parsing
68 SYS_GETJPIW and SYS_TRNLNM
69 Expressions, part 4: Evaluation

UCL Lexical Functions
70 PROCESS_SCAN
71 PROCESS_SCAN, Part 2
72 TProcess updates
73 Unicode revisted
74 Lexical functions: F$CONTEXT
75 Lexical functions: F$PID
76 Lexical Functions: F$CUNITS
77 Lexical Functions: F$CVSI and F$CVUI
78 UOS Date and Time Formatting
79 Lexical Functions: F$CVTIME
80 LIB_CVTIME
81 Date/Time Contexts
82 SYS_GETTIM, LIB_Get_Timestamp, SYS_ASCTIM, and LIB_SYS_ASCTIM
83 Lexical Functions: F$DELTA_TIME
84 Lexical functions: F$DEVICE
85 SYS_DEVICE_SCAN
86 Lexical functions: F$DIRECTORY
87 Lexical functions: F$EDIT and F$ELEMENT
88 Lexical functions: F$ENVIRONMENT
89 SYS_GETUAI
90 Lexical functions: F$EXTRACT and F$IDENTIFIER
91 LIB_FAO and LIB_FAOL
92 LIB_FAO and LIB_FAOL, part 2
93 Lexical functions: F$FAO
94 File Processing Structures
95 Lexical functions: F$FILE_ATTRIBUTES
96 SYS_DISPLAY
97 Lexical functions: F$GETDVI
98 Parse_GetDVI
99 GetDVI
100 GetDVI, part 2
101 GetDVI, part 3
102 Lexical functions: F$GETJPI
103 GETJPI
104 Lexical functions: F$GETSYI
105 GETSYI
106 Lexical functions: F$INTEGER, F$LENGTH, F$LOCATE, and F$MATCH_WILD
107 Lexical function: F$PARSE
108 FILESCAN
109 SYS_PARSE
110 Lexical Functions: F$MODE, F$PRIVILEGE, and F$PROCESS
111 File Lookup Service
112 Lexical Functions: F$SEARCH
113 SYS_SEARCH
114 F$SETPRV and SYS_SETPRV
115 Lexical Functions: F$STRING, F$TIME, and F$TYPE
116 More on symbols
117 Lexical Functions: F$TRNLNM
118 SYS_TRNLNM, Part 2
119 Lexical functions: F$UNIQUE, F$USER, and F$VERIFY
120 Lexical functions: F$MESSAGE
121 TUOS_File_Wrapper
122 OPEN, CLOSE, and READ system services

UCL Commands
123 WRITE
124 Symbol assignment
125 The @ command
126 @ and EXIT
127 CRELNT system service
128 DELLNT system service
129 IF...THEN...ELSE
130 Comments, labels, and GOTO
131 GOSUB and RETURN
132 CALL, SUBROUTINE, and ENDSUBROUTINE
133 ON, SET {NO}ON, and error handling
134 INQUIRE
135 SYS_WRITE Service
136 OPEN
137 CLOSE
138 DELLNM system service
139 READ
140 Command Recall
141 RECALL
142 RUN
143 LIB_RUN
144 The Data Stream Interface
145 Preparing for execution
146 EOJ and LOGOUT
147 SYS_DELPROC and LIB_GET_FOREIGN

CUSPs and utilities
148 The I/O Queue
149 Timers
150 Logging in, part one
151 Logging in, part 2
152 System configuration
153 SET NODE utility
154 UUI
155 SETTERM utility
156 SETTERM utility, part 2
157 SETTERM utility, part 3
158 AUTHORIZE utility
159 AUTHORIZE utility, UI
160 AUTHORIZE utility, Access Restrictions
161 AUTHORIZE utility, Part 4
162 AUTHORIZE utility, Reporting
163 AUTHORIZE utility, Part 6
164 Authentication
165 Hashlib
166 Authenticate, Part 7
167 Logging in, part 3
168 DAY_OF_WEEK, CVT_FROM_INTERNAL_TIME, and SPAWN
169 DAY_OF_WEEK and CVT_FROM_INTERNAL_TIME
170 LIB_SPAWN
171 CREPRC
172 CREPRC, Part 2
173 COPY
174 COPY, part 2
175 COPY, part 3
176 COPY, part 4
177 LIB_Get_Default_File_Protection and LIB_Substitute_Wildcards
178 CREATESTREAM, STREAMNAME, and Set_Contiguous
179 Help Files
180 LBR Services
181 LBR Services, Part 2
182 LIBRARY utility
183 LIBRARY utility, Part 2
184 FS Services
185 FS Services, Part 2
186 Implementing Help
187 HELP
188 HELP, Part 2
189 DMG_Get_Key and LIB_Put_Formatted_Output
190 LIBRARY utility, Part 3
191 Shutting Down UOS
192 SHUTDOWN
193 WAIT
194 SETIMR
195 WAITFR and Scheduling
196 REPLY, OPCOM, and Mailboxes
197 REPLY utility
198 Mailboxes
199 BRKTHRU
200 OPCOM
201 Mailbox Services
202 Mailboxes, Part 2
203 DEFINE
204 CRELNM
205 DISABLE
206 STOP
207 OPCCRASH and SHUTDOWN
208 APPEND

Glossary/Index


Downloads

LBR Services

In this article, we will start to address the LBR_ services.

unit LBRPas ;

interface

function Last_Error : int64 ;
function Ini_Control( var c : int64 ; func, typ : int64 ; name, default : string ;
    var Res : string ) : int64 ;
function Open( context : int64 ; Options : array of int64 ;
    name : string = '' ) : int64 ;
function Close( context : int64 ) : int64 ;
function Delete( context : int64 ; name : string ) : int64 ;
function Get_Module( context : int64 ; routine : int64 = 0 ;
    data : int64 = 0 ; key : string = '' ) : int64 ;
function Module_Exists( Context : int64 ; Name : string ) : boolean ;
function Put_Module( context : int64 ; name : string ; const module : string ) : int64 ;
function Close_Control( Context : int64 ) : int64 ;


implementation

uses // UOS...
     LBR, // LBR_*
     _UOS, // TSRB
     UOS_Util ; // Set_String

var _Last_Error : int64 = 0 ;

function Last_Error : int64 ;

begin
    Result := _Last_Error ;
end ;


function Ini_Control( var c : int64 ; func, typ : int64 ; name, default : string ;
    var Res : string ) : int64 ;

var _Name, _Default, _Res : TSRB ;
    Len : int64 ;
    R : string ;

begin
    // Setup...
    Set_String( name, _Name ) ;
    Set_String( default, _Default ) ;
    setlength( R, length( Name ) + length( Default ) ) ;
    Set_String( R, _Res ) ;
    Len := 0 ;

    Result := LBR_Ini_Control( int64( @c ), int64( @func ),
        int64( @typ ), int64( @_Name ), int64( @_Default ),
        int64( @_Res ), int64( @Len ) ) ;
    _Last_Error := Result ;
    Res := R ;
    setlength( Res, Len ) ;
end ;


function Open( context : int64 ; Options : array of int64 ;
    name : string = '' ) : int64 ;

var SRB : TSRB ;

begin
    Set_String( Name, SRB ) ;
    Result := LBR_Open( int64( @Context ), int64( @Options ), int64( @SRB ) ) ;
end ;


function Close( context : int64 ) : int64 ;

begin
    Result := LBR_Close( int64( @Context ) ) ;
end ;


function Delete( context : int64 ; name : string ) : int64 ;

var SRB : TSRB ;

begin
    Set_String( Name, SRB ) ;
    Result := LBR_Delete( int64( @Context ), int64( @SRB ) ) ;
end ;


function Get_Module( context : int64 ; routine : int64 = 0 ;
    data : int64 = 0 ; key : string = '' ) : int64 ;

var SRB : TSRB ;

begin
    Set_String( Key, SRB ) ;
    Result := LBR_Get_Module( int64( @Context ), Routine, Data, int64( @SRB ) ) ;
end ;


function Module_Exists( Context : int64 ; Name : string ) : boolean ;

var Res : int64 ;
    SRB : TSRB ;

begin
    Res := 0 ;
    Set_String( Name, SRB ) ;
    LBR_Module_Exists( int64( @Context ), int64( @SRB ), int64( @Res ) ) ;
    Result := ( Res <> 0 ) ;
end ;


function Put_Module( context : int64 ; name : string ; const module : string ) : int64 ;

var SName, SModule : TSRB ;

begin
    Set_String( name, SName ) ;
    Set_String( module, SModule ) ;
    Result := LBR_Put_Module( int64( @Context ), int64( @SName ), int64( @SModule ) ) ;
end ;


function Close_Control( Context : int64 ) : int64 ;

begin
    Result := LBR_Close_Control( int64( @Context ) ) ;
end ;


end.
This is the complete code (thus far) of the LBRPas module, which is a wrapper for the LBR module for Pascal. It simply wraps and unwraps Pascal strings to/from TSRB structures, as well as passing pointers to data. Non-Pascal code would directly call the LBR module.

type TStore64_To_UOS_File_Bridge = class( TCOM_Store64 )
                       public // Instance data...
                           _File : TCOM_UOS_File ;

                       public { API... }
                           function Is_Class( N : PChar ) : boolean ;
                               override ; stdcall ;

                           function Read_Data( var Data ; Address, _Size : TStore_Address64 ;
                               var UEC : TUnified_Exception ) : TStore_Address64 ;
                               override ; stdcall ;
                           { Read data from specified Address in store to Data.
                             Read _Size bytes.  Returns success of operation in UEC.
                             Function returns the number of bytes actually read. }

                           function Write_Data( var Data ; Address, _Size : TStore_Address64 ;
                               var UEC : TUnified_Exception ) : TStore_Address64 ;
                               override ; stdcall ;
                           { Write data from Data to specified Address in store.
                             Write _Size bytes.  Returns success of operation in UEC.
                             Function returns the number of bytes actually written. }

                           function Max_Storage : TStore_Size64 ;
                               override ; stdcall ;
                           { Returns the maximum (current) size of the store, in
                             bytes.  In other words, this is the highest valid
                             address (plus 1). }

                           function Min_Storage : TStore_Address64 ;
                               override ; stdcall ;
                           { Returns the minimum atomic size of the store.  For
                             instance, this would be the sector size for a disk. }

                           function Extend( Amount : TStore_Address64 ) : TStore_Address64 ;
                               override ; stdcall ;
                           { Requests extension of store by the amount specified.
                             Returns the amount actually added to store.  If Amount
                             is 0, function returns 0 if store is extendable, and -1
                             if it is not. }

                           function Get_Read_Only : boolean ;
                               override ; stdcall ;
                           { Indicates that the store can only be read from. }

                           function Get_Write_Only : boolean ;
                               override ; stdcall ;
                           { Indicates that the store can only be written to. }

                           procedure Format ; override ; stdcall ;
                           { Does a low-level format of the store. }

                           function Get_Name : Pchar ;
                               override ; stdcall ;
                           { Returns name of store. }

                           function Get_Cache : TCOM_Cache64 ;
                               override ; stdcall ;
                           { Returns current cache object. }

                           procedure Set_Cache( Value : TCOM_Cache64 ) ;
                               override ; stdcall ;
                           { Sets the current cache object. }

                           function Contiguous_Store : boolean ;
                               override ; stdcall ;
                           { Returns True if the store's addresses are contiguous
                             (non-sparse). }

                           procedure Set_Max_Storage( Value : TStore_Address64 ;
                               var Res : TUnified_Exception ) ;
                               override ; stdcall ;
                           { Sets the maximum (current) size of the store, in bytes.
                             In other words, this is the new highest valid address
                             (plus 1).  If the store is not resizable, the call
                             fails and an error code is returned in Res.  This should
                             only be used to shrink the size of the store, not to
                             extend it.  To extend, use the Extend method. }

                           function Extended_Size : TStore_Address64 ;
                               override ; stdcall ;
                           { Returns the maximum theoretical size that the store can
                             be extended to.  If the store is not extendable, this
                             returns the same value as Max_Storage. }

                           function Get_Bytes_Read : longint ;
                               override ; stdcall ;
                           function Get_Bytes_Written : longint ;
                               override ; stdcall ;
                           function Get_Reads : longint ;
                               override ; stdcall ;
                           function Get_Writes : longint ;
                               override ; stdcall ;
                           function Get_Error_Count : longint ;
                               override ; stdcall ;
                           procedure Set_Bytes_Read( Value : longint ) ;
                               override ; stdcall ;
                           procedure Set_Bytes_Written( Value : longint ) ;
                               override ; stdcall ;
                           procedure Set_Reads( Value : longint ) ;
                               override ; stdcall ;
                           procedure Set_Writes( Value : longint ) ;
                               override ; stdcall ;
                           procedure Set_Error_Count( Value : longint ) ;
                               override ; stdcall ;
                           procedure Set_Read_Only( Value : boolean ) ;
                               override ; stdcall ;
                           procedure Set_Write_Only( Value : boolean ) ;
                               override ; stdcall ;
                           function Get_Verifier : TCOM_Managed_Store64_Debugger ;
                               override ; stdcall ;
                           procedure Set_Verifier( Value : TCOM_Managed_Store64_Debugger ) ;
                               override ; stdcall ;
                   end ; // TStore64_To_UOS_File_Bridge
This is a file wrapper. The reason this is needed is because the executive uses one type of file which is shared with the file systems. Ring 3 code uses a file class that wraps calls to the various FIP services in the executive. In this case, however, we are accessing the file system code, using a ring 3 file as the store on which the file system operates. So, this class has the file system interface, but internally remaps all the calls to a ring 3 file. This is because the LBR services are in Ring 3 instead of the executive. We call this a "bridge" because it is bridging between the two types of files.

function TStore64_To_UOS_File_Bridge.Is_Class( N : PChar ) : boolean ;

var _N : string ;

begin
    _N := lowercase( string( N ) ) ;
    Result := ( _N = 'tstore64_to_uos_file_bridge' ) ;
end ;


function TStore64_To_UOS_File_Bridge.Read_Data( var Data ; Address,
    _Size : TStore_Address64 ;
    var UEC : TUnified_Exception ) : TStore_Address64 ;

begin
    Result := _File.Read_Data( Data, Address, _Size, UEC ) ;
end ;


function TStore64_To_UOS_File_Bridge.Write_Data( var Data ;
    Address, _Size : TStore_Address64 ;
    var UEC : TUnified_Exception ) : TStore_Address64 ;

begin
    Result := _File.Write_Data( Data, Address, _Size, UEC ) ;
end ;


function TStore64_To_UOS_File_Bridge.Max_Storage : TStore_Size64 ;

begin
    Result := _File.Get_Size ;
end ;


function TStore64_To_UOS_File_Bridge.Min_Storage : TStore_Address64 ;

begin
    Result := 512 ;
end ;


function TStore64_To_UOS_File_Bridge.Extend( Amount : TStore_Address64 ) : TStore_Address64 ;

var Buffer : array[ 0..32767 ] of byte ;
    Count : TStore_Address64 ;
    UEC : TUnified_Exception ;

begin
    fillchar( Buffer, sizeof( Buffer ), 0 ) ;
    Result := 0 ;
    while( Amount > 0 ) do
    begin
        if( Amount > sizeof( Buffer ) ) then
        begin
            Count := sizeof( Buffer ) ;
        end else
        begin
            Count := Amount ;
        end ;
        Result := Result + Write_Data( Buffer, Max_Storage, Count, UEC ) ;
        if( UEC <> nil ) then
        begin
            exit ;
        end ;
        Amount := Amount - Count ;
    end ;
end ;


function TStore64_To_UOS_File_Bridge.Get_Read_Only : boolean ;

begin
    Result := False ;
end ;


function TStore64_To_UOS_File_Bridge.Get_Write_Only : boolean ;

begin
    Result := False ;
end ;


procedure TStore64_To_UOS_File_Bridge.Format ;

begin
end ;


function TStore64_To_UOS_File_Bridge.Get_Name : Pchar ;

begin
    Result := nil ;
end ;


function TStore64_To_UOS_File_Bridge.Get_Cache : TCOM_Cache64 ;

begin
    Result := nil ;
end ;


procedure TStore64_To_UOS_File_Bridge.Set_Cache( Value : TCOM_Cache64 ) ;

begin
end ;


function TStore64_To_UOS_File_Bridge.Contiguous_Store : boolean ;

begin
    Result := False ;
end ;


procedure TStore64_To_UOS_File_Bridge.Set_Max_Storage( Value : TStore_Address64 ;
   var Res : TUnified_Exception ) ;

begin
    Res := nil ;
    _File.Set_Size( Value ) ;
end ;


function TStore64_To_UOS_File_Bridge.Extended_Size : TStore_Address64 ;

begin
    Result := 0 ;
    //todo:return available space on store contaning the file
end ;


function TStore64_To_UOS_File_Bridge.Get_Bytes_Read : longint ;

begin
    Result := 0 ;
end ;


function TStore64_To_UOS_File_Bridge.Get_Bytes_Written : longint ;

begin
    Result := 0 ;
end ;


function TStore64_To_UOS_File_Bridge.Get_Reads : longint ;

begin
    Result := 0 ;
end ;


function TStore64_To_UOS_File_Bridge.Get_Writes : longint ;

begin
    Result := 0 ;
end ;


function TStore64_To_UOS_File_Bridge.Get_Error_Count : longint ;

begin
    Result := 0 ;
end ;


procedure TStore64_To_UOS_File_Bridge.Set_Bytes_Read( Value : longint ) ;

begin
end ;


procedure TStore64_To_UOS_File_Bridge.Set_Bytes_Written( Value : longint ) ;

begin
end ;


procedure TStore64_To_UOS_File_Bridge.Set_Reads( Value : longint ) ;

begin
end ;


procedure TStore64_To_UOS_File_Bridge.Set_Writes( Value : longint ) ;

begin
end ;


procedure TStore64_To_UOS_File_Bridge.Set_Error_Count( Value : longint ) ;

begin
end ;


procedure TStore64_To_UOS_File_Bridge.Set_Read_Only( Value : boolean ) ;

begin
end ;


procedure TStore64_To_UOS_File_Bridge.Set_Write_Only( Value : boolean ) ;

begin
end ;


function TStore64_To_UOS_File_Bridge.Get_Verifier : TCOM_Managed_Store64_Debugger ;

begin
    Result := nil ;
end ;


procedure TStore64_To_UOS_File_Bridge.Set_Verifier( Value : TCOM_Managed_Store64_Debugger ) ;

begin
end ;
This is the implementation for the file bridge class in LBR. We won't bother to go over it in detail since there isn't anything unusual here. We simply pass the requests on to the file instance that we are wrapping.

type LBR_Context = class
                       public
                           Sanity : array[ 0..3 ] of char ;
                           Name : string ;
                           Typ : int64 ;
                           Fun : int64 ;
                           FS : TUOS_Native_File_System ;
                           Opened : boolean ;
                   end ;
As mentioned in the documentation in the previous article, the LBR routines depend upon a context created by LBR_Ini_Control. This class defines the context used by the LBR services. Frankly, the whole approach of the VMS LBR services is somewhat unwieldly. But in the attempt to stay true to the VMS specification (at least as much as is reasonable), we have copied this approach for UOS.

function LBR_Ini_Control( context, func, typ, name, default, res, len : int64 ) : int64 ;

var C : LBR_Context ;
    _Name, _Default, _Res : string ;

begin
    // Setup...
    if( Func <> 0 ) then
    begin
        Func := PInt64( Func )^ ;
    end ;
    if( Typ <> 0 ) then
    begin
        Typ := PInt64( Typ )^ ;
    end ;
    if( ( Func < LBR_C_Create ) or ( Func > LBR_C_Update ) ) then
    begin
        Result := LBR_ILLFUNC ;
        if( Context <> 0 ) then
        begin
            PInt64( Context )^ := 0 ;
        end ;
        exit ;
    end ;
    if( ( Typ > LBR_C_TYP_NCS ) or ( Typ = 0 )  ) then
    begin
        Result := LBR_ILLTYP ;
        if( Context <> 0 ) then
        begin
            PInt64( Context )^ := 0 ;
        end ;
        exit ;
    end ;
    Result := 0 ;
    _Name := trim( Get_String( PSRB( name )^ ) ) ;
    _Default := trim( Get_String( PSRB( Default )^ ) ) ;
    _Res := Substitute_Wildcards( _Name, '', _Default ) ;
    if( ( _Name = '' ) or ( _Res = '' ) ) then
    begin
        Result := LBR_NOFILNAM ;
        if( Context <> 0 ) then
        begin
            PInt64( Context )^ := 0 ;
        end ;
        exit ;
    end ;
LBR_Ini_Control creates the control class and returns it to the caller. This code gets and validates the passed parameters. It constructs the libary name from the passed name and defaults.

    // Create the context...
    if( Context <> 0 ) then
    begin
        C := LBR_Context.Create ;
        C.Name := _Name ;
        C.Typ := Typ ;
        C.Fun := Func ;
        C.Sanity := #3'LBR' ;
        Pint64( Context )^ := int64( C ) ;
    end ;

    // Return results...
    if( Res <> 0 ) then
    begin
        if( length( _Res ) > PSRB( Res )^.Length  ) then
        begin
            setlength( _Res, PSRB( Res )^.Length ) ;
        end ;
        move( PChar( _Res )[ 0 ], PChar( PSRB( Res )^.Buffer )[ 0 ], length( _Res ) ) ;
    end else
    begin
        _Res := '' ;
    end ;
    if( Len <> 0 ) then
    begin
        PInt64( Len )^ := length( _Res ) ;
    end ;
end ; // LBR_Ini_Control
Next we construct the class, then return the name with defaults applied. If the return buffer size is too small, we truncate the result and no error is returned. If a length result was requested, we return the actual size of the returned name. Note that the Sanity data in the LBR_Context class is there to help be sure that what is passed to the LBR routines is a valid instance of the class.

function LBR_Open( context : int64 ; options : int64 = 0 ; name : int64 = 0 ) : int64 ;

var Allocation, Clustersize : int64 ;
    AT_Offset : TStore_Address64 ;
    Bridge : TStore64_To_UOS_File_Bridge ;
    Buffer : array[ 0..32767 ] of byte ;
    C : LBR_Context ;
    Err, Flags : int64 ;
    NFil : TUOS_File ;
    Fil : TCOM_UOS_File ;
    Info : TUOS_File_Info ;
    _Name : string ;
    P : int64 ;
    UEC : TUnified_Exception ;

begin
    // Sanity checks...
    if( Context = 0 ) then
    begin
        Result := LBR_ILLCTL ;
        exit ;
    end ;
    Context := Pint64( Context )^ ;
    if( Context = 0 ) then
    begin
        Result := LBR_ILLCTL ;
        exit ;
    end ;
    C := LBR_Context( Context ) ;
    if( C.Sanity <> #3'LBR' ) then
    begin
        Result := LBR_ILLCTL ;
        exit ;
    end ;
    if( C.Opened ) then
    begin
        Result := LBR_LIBOPN ;
        exit ;
    end ;
This service opens a library. First we get the context and validate it.

    // Setup...
    Allocation := 8192 ; // Default size of new library
    Clustersize := 0 ;
    if( Options <> 0 ) then
    begin
        Allocation := PInt64( Options )^ ;
        Clustersize := PInt64( Options + 8 )^ ;
    end ;
    _Name := '' ;
    if( name <> 0 ) then
    begin
        _Name := trim( Get_String( PSRB( name )^ ) ) ;
    end ;
    if( _Name = '' ) then
    begin
        _Name := C.Name ;
    end ;
Next we get the other parameters. We default to 8K for the initial size of the library (if we're creating a new library).

    // Open/create the file...
    Flags := 0 ;
    if( C.Fun = LBR_C_Create ) then
    begin
        Flags := FAB_V_SUP or FAB_V_CIF ;
    end else
    if( C.Fun = LBR_C_Read ) then
    begin
        Flags := FAB_V_GET ;
    end else
    begin
        Flags := FAB_V_UPD ;
    end ;
    Fil := Open_Binary_File( _Name, Flags ) ;
    if( Fil = nil ) then // Open failed
    begin
        Err := LIB_Get_Exception( 0 ) ;
        Result := LIB_Get_Exception_Code( 0, Err ) ;
        exit ;
    end ;
    if( C.Fun = LBR_C_Create ) then // Creating new file...
    begin
        // Expand the file to the requested allocation size...
        fillchar( Buffer, sizeof( Buffer ), 0 ) ;
        P := 0 ;
        while( Allocation > 0 ) do
        begin
            if( Allocation < sizeof( Buffer ) ) then
            begin
                Fil.Write_Data( Buffer, P, Allocation, UEC ) ;
            end else
            begin
                Fil.Write_Data( Buffer, P, sizeof( Buffer ), UEC ) ;
            end ;
            if( ( UEC <> nil ) and ( UEC.Get_Error <> 0 ) ) then
            begin
                Result := UEC.Get_Error ;
                exit ;
            end ;
            Allocation := Allocation - sizeof( Buffer ) ;
            P := P + sizeof( Buffer ) ;
        end ;
    end ; // if( C.Fun = LBR_C_Create )
Now we determine the flags to pass to the Open_Binary_File routine based on the function given in LBR_Ini_Control. If the file fails to open, we return the error. Otherwise, if we are creating a new library, we have to extend the file to the appropriate size.

    C.FS := TUOS_Native_File_System.Create ;
    C.FS.Store := TUOS_Managed_Store.Create ;
    Bridge := TStore64_To_UOS_File_Bridge.Create ;
    Bridge._File := Fil ;
    C.FS.Store.Store := Bridge ;
    C.Opened := True ;
    if( C.Fun = LBR_C_Create ) then // Need to initialize the file
    begin
        AT_Offset := 0 ; // Use default position
        C.FS.Init( nil, nil, 0, Clustersize, Clustersize, 0, AT_Offset, nil ) ;
    end ;
    UEC := C.FS.Mount( nil, nil, 0 ) ;
    if( UEC <> nil ) then
    begin
        if( UEC.Get_Error = UOS_File_System_Is_Dirty ) then
        begin
            C.FS.Rebuild ;
            UEC := C.FS.Mount( nil, nil, 0 ) ; // Try again
            if( UEC <> nil ) then
            begin
                if( UEC.Get_Error <> 0 ) then
                begin
                    Result := UEC.Get_Error ;
                    exit ;
                end ;
            end ;
        end else
        if( UEC.Get_Error <> 0 ) then
        begin
            Result := UEC.Get_Error ;
            exit ;
        end ;
    end ; // if( UEC <> nil ) then
Now that we have a newly created or pre-existing file, we create a file system object, managed store, and bridged file store so that we can open the file as a file system file. Then we mount the file system. Note that because this is a file system within a file, it is possible that the file system would be "dirty" if we didn't close it properly before (such as the librarian ending before an operation is complete). If we get a dirty file system error, we tell the file system to rebuild, and then try to mount it again. If there is any further error, we exit and return the error.

    // Create root directory, if none...
    fillchar( Info, sizeof( Info ), 0 ) ;
    Info.Flags := FAF_DIRECTORY ;
    C.FS.Create_File( PChar( inttostr( C.Typ ) ), Info ) ;
    Result := 0 ;
end ; // LBR_Open
Finally, we make sure to create the root for the library type. Because UOS libraries can have multiple types of modules, there can be a directory for each type. This code ensures that the appropriate directory exists. If it already exists, the call will fail, but we don't care about that.

function LBR_Close( context : int64 ) : int64 ;

var C : LBR_Context ;

begin
    // Sanity checks...
    Result := 0 ;
    if( Context = 0 ) then
    begin
        Result := LBR_ILLCTL ;
        exit ;
    end ;
    Context := Pint64( Context )^ ;
    if( Context = 0 ) then
    begin
        Result := LBR_ILLCTL ;
        exit ;
    end ;
    C := LBR_Context( Context ) ;
    if( C.Sanity <> #3'LBR' ) then
    begin
        Result := LBR_ILLCTL ;
        exit ;
    end ;
    if( not C.Opened ) then
    begin
        Result := LBR_LIBNOTOPN ;
        exit ;
    end ;
    C.FS.Dismount ;
    C.FS.Free ;
    C.Opened := False ;
end ;
After verifying a correct control, this routine dismounts and closes the open file system for the given context.

function LBR_Delete( context, name : int64 ) : int64 ;

var C : LBR_Context ;
    _Name : string ;
    UEC : TUnified_Exception ;

begin
    // Sanity checks...
    if( Context = 0 ) then
    begin
        Result := LBR_ILLCTL ;
        exit ;
    end ;
    Context := Pint64( Context )^ ;
    if( Context = 0 ) then
    begin
        Result := LBR_ILLCTL ;
        exit ;
    end ;
    C := LBR_Context( Context ) ;
    if( C.Sanity <> #3'LBR' ) then
    begin
        Result := LBR_ILLCTL ;
        exit ;
    end ;
    if( not C.Opened ) then
    begin
        Result := LBR_LIBNOTOPN ;
        exit ;
    end ;
    _Name := '' ;
    if( name <> 0 ) then
    begin
        _Name := trim( Get_String( PSRB( name )^ ) ) ;
    end ;
    if( _Name = '' ) then
    begin
        Result := LBR_INVNAME ;
        exit ;
    end ;
    if( pos( '\', _Name ) + pos( ':', _Name ) + pos( '*', _Name ) + pos( '?', _Name ) > 0 ) then
    begin
        Result := LBR_INVNAME ;
        exit ;
    end ;
    _Name := inttostr( C.Typ ) + '\' + _Name ;
As with the last service, we first get and validate the context, and obtain the other parameters. We prefix the module name with the root directory based on the type from the context.

    // Delete the module...
    Result := 0 ;
    UEC := C.FS.Delete_File( PChar( _Name ) ) ;
    if( ( UEC <> nil ) and ( UEC.Get_Error <> 0 ) ) then
    begin
        Result := UEC.Get_Error ;
        UEC.Detach ;
    end ;
end ; // LBR_Delete
Finally, we tell the file system to delete the module, returning any errors.

function LBR_Put_Module( context, name, module : int64 ) : int64 ;

var C : LBR_Context ;
    Fil : TUOS_Native_File_System ;
    NFil : TUOS_File ;
    Info : TUOS_File_Info ;
    _Name : string ;
    Size, Address : int64 ;
    UEC : TUnified_Exception ;

begin
    // Sanity checks...
    Result := 0 ;
    if( Context = 0 ) then
    begin
        Result := LBR_ILLCTL ;
        exit ;
    end ;
    Context := Pint64( Context )^ ;
    if( Context = 0 ) then
    begin
        Result := LBR_ILLCTL ;
        exit ;
    end ;
    C := LBR_Context( Context ) ;
    if( C.Sanity <> #3'LBR' ) then
    begin
        Result := LBR_ILLCTL ;
        exit ;
    end ;
    if( not C.Opened ) then
    begin
        Result := LBR_LIBNOTOPN ;
        exit ;
    end ;
    _Name := '' ;
    if( name <> 0 ) then
    begin
        _Name := trim( Get_String( PSRB( name )^ ) ) ;
    end ;
    if( _Name = '' ) then
    begin
        Result := LBR_INVNAME ;
        exit ;
    end ;
    if( pos( '\', _Name ) + pos( ':', _Name ) + pos( '*', _Name ) + pos( '?', _Name ) > 0 ) then
    begin
        Result := LBR_INVNAME ;
        exit ;
    end ;
    Size := 0 ;
    Address := 0 ;
    if( module <> 0 ) then
    begin
        Size := PSRB( Module )^.Length ;
        Address := PSRB( Module )^.Buffer ;
    end ;
    _Name := inttostr( C.Typ ) + '\' + _Name ;
As before, we get the parameters, and validate the context. Then we prefix the module name with the root directory based on the library type.

    // Create new module...
    C.FS.Delete_File( PChar( _Name ) ) ; // Delete any existing file
    fillchar( Info, sizeof( Info ), 0 ) ;
    Info.Size := Size ;
    C.FS.Create_File( PChar( _Name ), Info ) ;

    // Open file...
    NFil := C.FS.Get_File( PChar( _Name ) ) ;
    if( NFil = nil ) then
    begin
        UEC := C.FS.Last_Error ;
        Result := UEC.Get_Error ;
        exit ;
    end ;

    // Write data to file...
    if( NFil.Write( 0, 0, Size, PChar( Address )[ 0 ], 0 ) <> Size ) then
    begin
        UEC := C.FS.Last_Error ;
        Result := UEC.Get_Error ;
        exit ;
    end ;

    // Clean up
    NFil.Free ;
end ; // LBR_Put_Module
Next we delete the file if it already exists. Then we create a new one and write the module data to it. Why not just write over the existing file if there is one? Because if the existing file is larger, we'd only overwrite the first part of the file. The file would thus take up more space than necessary and, when extracted, would be too large and have excess data at the end.

These are the generic LBR functions that we discussed in the documentation. In the next article, we will look at the help-specific services (and a few others not yet documented).